The Hutchins Water Center at Colorado Mesa University is pleased to host the 12th annual UPPER COLORADO RIVER BASIN WATER FORUM

October 30–31, 2023 Grand Junction, Colorado

RESHAPING THE RIVER Reimagining Water Use and Management

in the Upper Colorado River Basin

 $\widehat{}$

BABBITT CENTER FOR LAND AND WATER POLICY

A Center of the Lincoln Institute of Land Policy

Water Security Index in the Colorado River Basin (WSICRB) Cases from the Upper Basin: Grand Junction, Colorado.

> Presented by: Hernández-Romero Paul

> > Lima Ryan

Fall 2023

Paul Hernández-Romero Universidad de las Americas Puebla UNESCO Chair on Hydrometeorological Risks

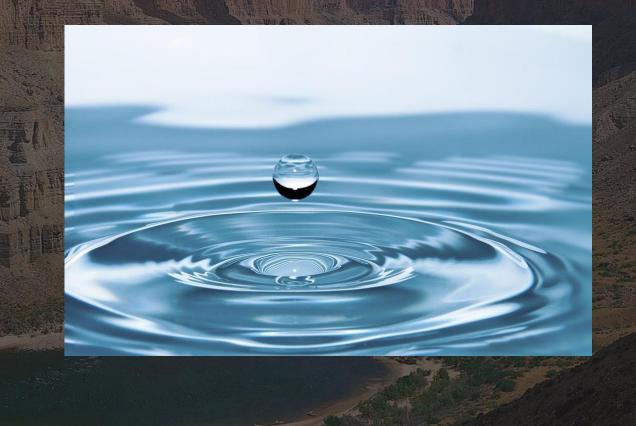
Ryan Lima Babbitt Center for Land and Water, Lincoln Institute of Land Policy. Northern Arizona University

Zachary Sugg Babbit Center for Land and Water, Lincoln Institute of Land Policy.

Faith Sternlieb Center for Geospatial Solutions, Lincoln Institute of Land Policy.

Sustainable Development

"It is within humanity's power to ensure that development is sustainable, that is, to ensure it meets the needs of the present without compromising the ability of future generations to meet their own."


From Our Common Future, UN 1987.

Fuente: UN, 1987

The water resource is unique because, in addition to being essential for life, it does not have an equivalent substitute so far. It is used in the production of ALL goods and services, with no natural or synthetic resource that can replace it.

Global risks ranked by severity over the short and long term

"Please estimate the likely impact (severity) of the following risks over a 2-year and 10-year period"

2 years

Large-scale involuntary migration

Economic

10 years

1	Failure to mitigate climate change
2	Failure of climate-change adaptation
3	Natural disasters and extreme weather events
4	Biodiversity loss and ecosystem collapse
5	Large-scale involuntary migration
6	Natural resource crises
7	Erosion of social cohesion and societal polarization
8	Widespread cybercrime and cyber insecurity
9	Geoeconomic confrontation
10	Large-scale environmental damage incidents

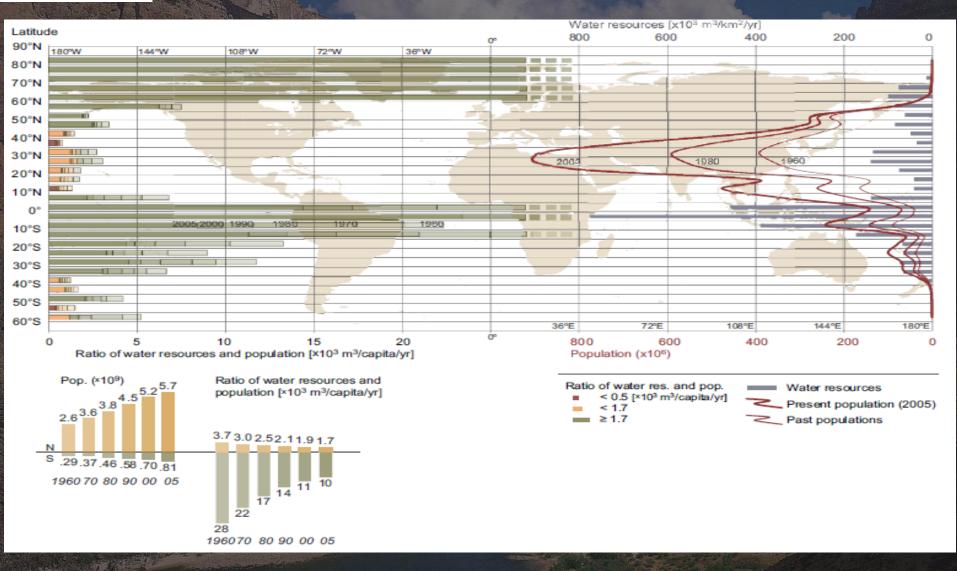
Technological

Natural Resources crisis (Water Crisis):

Flisk categories

"A significant decrease in the quality and quantity of <u>available</u> drinking water, resulting in adverse effects on human health and/or economic activity."

Geopolitical


Societal

Environmental

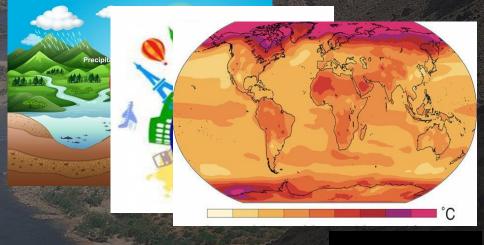
10

Fuente: The world by latitudes: a global analysis of human population, development level and environment across the north-south axia over the past half century (Kummu & Varis, 2011)

Water Security Concept

"Water Security is defined here as the ability of a population to safeguard sustainable access to adequate quantities of water of acceptable quality to maintain livelihoods, human wellbeing and socio-economic development, to ensure protection against waterborne pollution and water-related disasters, and to preserve ecosystems in a climate of peace and political stability"

(UN-WATER, 2013).



Water Security Concept

Two approaches have been established regarding this concept :

- Specific disciplinary definitions.
- Multidisciplinary and integrative definitions.
- Whichever approach is taken, achieving Water Security is defined by many factors, and three in particular stand out:
- 1.- Hydrological environment,
- 2.- The socioeconomic environment,
- 3.- Expected future changes.

Water Security Index in the Colorado River Basin (WSICRB)

General Objectives:

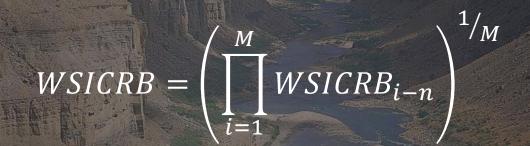
To propose, construct and implement a Water Security Index for a strategic region within the Colorado River Basin.

Specific Objectives:

To propose components and a calculation methodology for the WSICRB.

To evaluate the status of the established components of the WSICRB.

To implement the WSICRB within a strategic region at the watershed level.


To build and represent the WSICRB in a GIS that serves as a tool for integrated water management.

Water Security Index in the Colorado River Basin (WSICRB)

The proposed calculation of the WSICRB is defined as a *geometric mean* of the components in a HUC10, since it does not mask the low values and prevents each value from having the same incidence in the result (UNDP, 2019). its calculation is performed according to the following formula:

Where:

 $WSICRB_{i-n}$ = Components to Evaluate Water Security, dimensionless. M = Number of components.

Dimension, Components and indicators

 $WSICRB = WSICRB_i * WSICRB_j * WSICRB_k * WSICRB_l^{1/4}$

WSICRB							
DIMENSION	COMPONENTS	INDICATORS					
		Water Scarcity Index (WSI)					
Availability And Quality	Water availability (WSICRB _i)	Groundwater Extraction Index (GEI)					
	Water Quality (WSICRB _j)	Water Quality Index (WQI)					
Water Supply	Accessibility (WSICRB _k)	Water Supply Users Proportion (WSUP)					
明朝日期的		Expected Annual Loss (EAL)					
Water Hazards	Potencial Risks (WSICRB _I)	Social Vulnerability (SV)					
		Community Resilience (CR)					

WSICRB Summary of Proposals

WATER SECURITY INDEX IN THE COLORADO RIVER BASIN (WSICRB)

EQUATION:	$WSICRB = \left(\prod_{i=1}^{M} WSICRB_{i-n}\right)^{1/M}$					
DIMENSION	COMPONENTS	INDICATORS				
Availability And	Water availability (WSICRB _i)	$WSICRB_i = WSI * F_a + GEI * F_b$				
Quality	Water Quality (WSICRB _j)	$WSICRB_j = WQI$				
Water Supply	Accessibility (WSICRB _k)	$WSICRB_k = WSUP$				
Water Hazards and Climate Change	Potencial Risks (WSICRB _I)	$WSICRB_{l} = NRI$ $\Box LINCOLN INSTITUTE$ of LAND POLICY				

WSICRB Classification

WSICRB						
Degree	Value					
Extremelly High	WSICRB > 0.81					
High	0.61 < WSICRB <= 0.80					
Moderate	0.40 < WSICRB <= 0.60					
Low	0.00 < WSICRB <= 0.01					
Very Low	0.00 < WSICRB <= -0.39					
Extremely Low	WSICRB < - 0.40					

WSICRBDegreeValueExtremelly HighWSICRB > 0.91High0.81 < WSICRB <= 0.90		A Charles and the second se						
Extremelly High WSICRB > 0.91 High 0.81 < WSICRB <= 0.90 Moderate 0.71 < WSICRB <= 0.80 Low 0.51 < WSICRB <= 0.70		WSICRB						
High 0.81 < WSICRB <= 0.90	Degree	Value						
Moderate 0.71 < WSICRB <= 0.80	Extremelly High	<i>WSICRB</i> > 0.91						
Low 0.51 < WSICRB <= 0.70	High	0.81 < WSICRB <= 0.90						
	Moderate	0.71 < WSICRB <= 0.80						
Very Low 0.31 < WSICRB <= 0.50	Low	0.51 < WSICRB <= 0.70						
	Very Low	0.31 < WSICRB <= 0.50						
Extremely LowWSICRB < 0.30	Extremely Low	<i>WSICRB</i> < 0.30						

Water availability (WSICRB_i)

$WSICRB_i = (WSI * F_a) + (GEI * F_b)$

Where:

WSI = Water Scarcity Index (dimensionless).

GEI = Groundwater Extraction Index (dimensionless)

 F_{a-b} = Weighting factor of the indicator.

 $WSI = \frac{W_i}{WA_i - EWR_i}$

 $GEI = \frac{GW}{R}$

WorenDi					
Grado	Valores				
Extremelly High	WSICRB _i > 0.91				
High	0.81 < WSICRB _i <= 0.90				
Moderate	0.61 < WSICRB _i <= 0.80				
Low	0.21 < WSICRB _i <= 0.6				
Very Low	$WSICRB_i < 0.20$				

Source:Smakhtin, Revenga, & Döll, 2004; Vörösmarty, Douglas, Green, & Revenga, 2005; Gain, Giupponi, & Wada, 2016

Water Quality (WSICRB_i)

 $WSICRB_j = WQI$

Where:

WQI = Water Quality Index (Dimensionless).

 $WQI = \frac{\sum I_i W_i}{\sum W_i}$

Where:

 W_i = Weighting factor for each parameter.

 I_i = Subindex value expressed in Water Quality Index (WQI).

WSICRB;DegreeValueVery Good $WSICRB_j > 0.90$ Good $0.71 < WSICRB_j <= 0.90$ Moderate $0.51 < WSICRB_j <= 0.70$ Bad $0.26 < WSICRB_j <= 0.50$ Very Bad $WSICRB_j < 0.25$

Source: NFS (2022); Canter (1998).

Accessibility (WSICRB_k)

UPPER COLORADO RIVER BASIN WATER FORUM

$WSICRB_k = WSUP$

Where:

WSUP = Water Supply Users Proportion (Dimensionless).

 $WSUP = \frac{No. of Water supply Users}{Total population} x 100$

M/CICDR

WUSICKD _k							
Degree	Value						
Extremelly High	$WSICRB_k > 0.95$						
High	0.86 < WSICRB _k <= 0.95						
Moderate	0.76 < WSICRB _k <= 0.85						
Low	0.60 < WSICRB _k <= 0.75						
Very Low	$WSICRB_k < 0.60$						

Potencial Risks (WSICRB_I)

$WSICRB_l = NRI$

Where:

NRI = National Risk Index (Dimensionless).

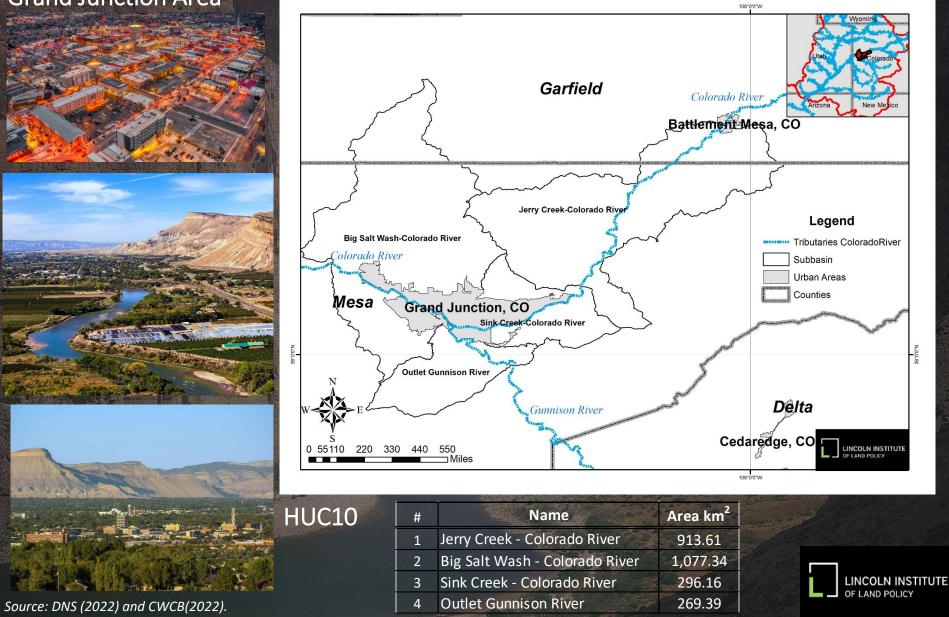
 $NRI = \frac{EAL * SV}{CR}$

Where:

EAL = Expected Annual Loss (Adimensional).SV = Social Vulnerability (Adimensional).CR = Community Resilience (Adimensional).

WSICRB					
Degree	Value				
Very Low	$WSICRB_{I} > 0.87$				
Relatively Low	0.81 > WSICRB ₁ =< 0.87				
Relatively Moderate	0.74 > WSICRB _I =< 0.81				
Relatively High	0.63 > WSICRB ₁ =< 0.74				
Very High	<i>WSICRB</i> _I <= 0.63				

Source: FEMA,2021


WATER SECURITY INDEX IN THE COLORADO RIVER BASIN

Grand Junction Area

COLORADO MESA Description of Study Areas.

Grand Junction Area

WATER SECURITY INDEX IN THE COLORADO RIVER BASIN

Implementation of the WSICRB

Water availability (WSICRB_i)

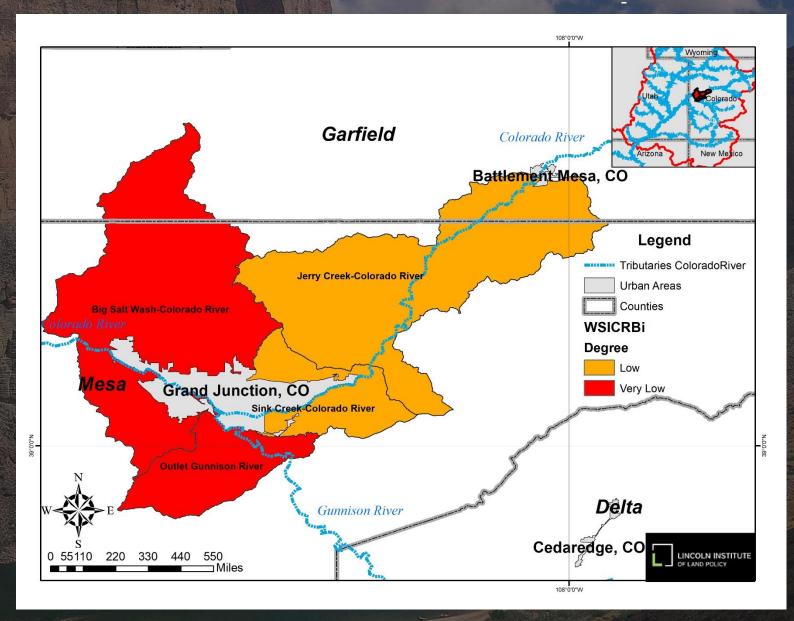
Grand Junction Area

WATER AVAILABILITY (WSICRB_i)

#	Subbasin	WSI	Degree	GEI	Degree	Fa	Fb	WSICRB _i	Degree	Normali	zed Value
1	Jerry Creek - Colorado River	-0.4327	Very Low	0.984	Extremelly High	98.55%	1.45%	-0.412	Very Low	0.294	Low
2	Big Salt Wash - Colorado River	-0.5015	Very Low	0.982	Extremelly High	98.51%	1.49%	-0.479	Very Low	0.260	Low
3	Sink Creek - Colorado River	-0.7430	Very Low	0.997	Extremelly High	98.43%	1.57%	-0.716	Very Low	0.142	Very Low
4	Outlet Gunnison River	-0.8421	Very Low	0.997	Extremelly High	98.34%	1.66%	-0.812	Very Low	0.094	Very Low

Source:

- Dieter et. al (2018): Estimated use of water in the United States county-level data for 2015 (ver. 2.0, June 2018).
- > DNR (2015). Colorado Water Plan 2015.
- USGS (2016). Ground Water Atlas of the United States: Colorado Plateaus Aquifers.



LINCOLN INSTITUTE

OF LAND POLICY

Water availability (WSICRB_i)

Implementation of the WSICRB

UPPER COLORADO RIVER BASIN WATER FORUM

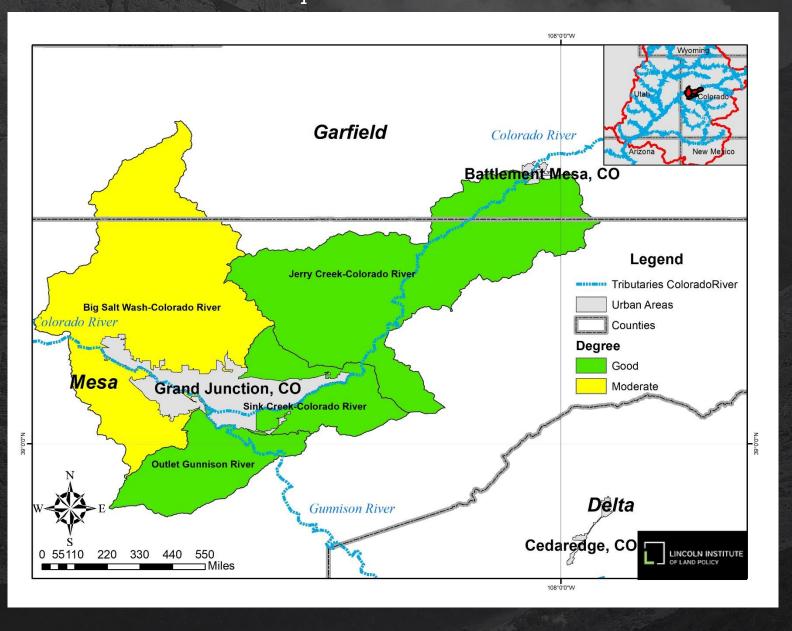
Water Quality (WSICRB_i)

Grand Junction Area

Water Quality (WSICRB_j)

Id	Subbacin	C	WQI	NFS		
	Id Subbasin		Quality	WQI	Quality	
1	Jerry Creek - Colorado River	70.4	Fair	70.2	Good	
2	Big Salt Wash - Colorado River	62.8	Marginal	62.8	Moderate	
3	Sink Creek - Colorado River	73.0	Fair	72.8	Good	
4	Outlet Gunnison River	70.3	Fair	70.0	Good	

Source:


National Sanitation Foundation (2020). Water Research Center: Monitoring the quality of surface waters

Canter (1998). Transformation Functions for parameter expressed in Quality Index.

NWQMC (2022). National Water Quality Monitoring Council: Water Quality Data.

Water Quality (WSICRB_i)

LINCOLN INSTITUTE

Implementation of the WSICRB

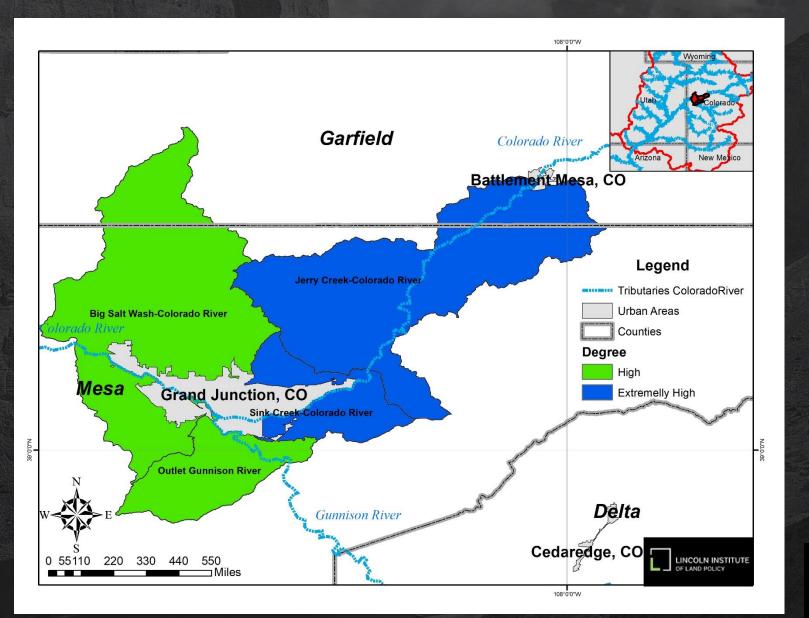
<u>Accessibility (WSICRB_k)</u>

Grand Junction Area

ACCESSIBILITY (WSICRB_k)

Subbasin			Cou	unty		WSICRB _k			
Name	Area km ²	%	Name	Area km ²	TP-TotPop	PS-TOPop	WSUP	%	Degree
	· 新聞用型開設。	Service States							
Jerry Creek - Colorado River	765.09	8.84%	Mesa	8,653.34	148,513.00	144,180.00	0.971	-87.49%	6 High
Serry Creek Colorado Hiver	148.52	1.94%	Garfield	7,655.50	58,095.00	45,250.00	0.779	07.4370	
Big Salt Wash - Colorado River*	924.76	10.69%	Mesa	8,653.34	148,513.00	144,180.00	0.971	87.49%	High
Big Sait Wash - Colorado River	152.58	1.99%	Garfield	7,655.50	58,095.00	45,250.00	0.779	07.4970	riigii
Sink Creek - Colorado River	296.16	3.42%	Mesa	8,653.34	148,513.00	144,180.00	0.971	97.08%	Extremelly H
Outlet Gunnison River	269.39	3.11%	Mesa	8,653.34	148,513.00	144,180.00	0.971	97.08%	Extremelly H

Avg. Between two conunties


Source:

- Dieter et. al (2018): Estimated use of water in the United States county-level data for 2015 (ver. 2.0, June 2018).
- USGS (2015). The U.S. Geological Survey's National Water-Use Science Project (formerly the National Water-Use Information Program)

Accessibility (WSICRB_k)

LINCOLN INSTITUTE

Implementation of the WSICRB.

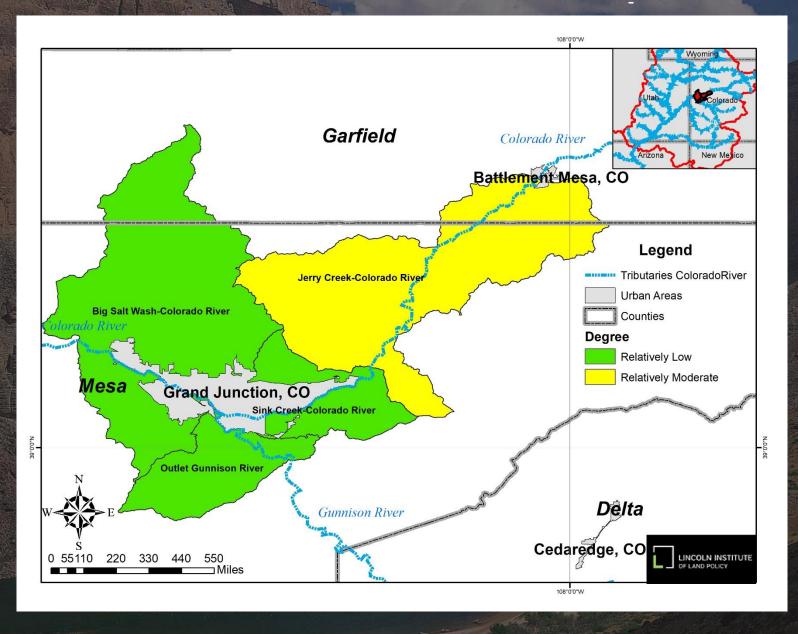
Potencial Risks (WSICRB)

Grand Junction Area

POTENCIAL RISK (WSICRB_I)

# Subbasin		NR	WSICRB ₁		
Name	Area km ²	Score	Rating	Value	Degree
					Relatively
1 Jerry Creek - Colorado River	913.61	25.12	Relatively High	0.749	Moderate
2 Big Salt Wash - Colorado River	1,077.34	17.84	Relatively Low	0.822	Relatively Low
3 Sink Creek - Colorado River	296.16	15.29	Relatively Low	0.847	Relatively Low
4 Outlet Gunnison River	269.39	16.70	Relatively Low	0.833	Relatively Low

Source:


- > FEMA (2021). National Risk Index
- FEMA (2022). National Risk Map (https://hazards.fema.gov/nri/map)

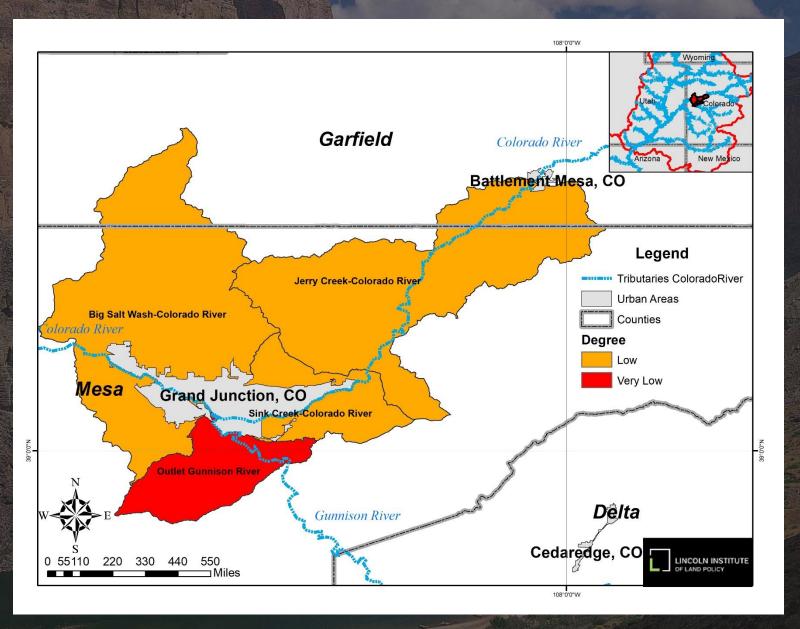
LINCOLN INSTITUTE OF LAND POLICY

Potencial Risks (WSICRB)

WSICRB

Grand Junction Area

WATER SECURITY INDEX IN THE COLORADO RIVER BASIN (WSICRB)


#	Subbasin	WSICRB _i	Degree	WSICRB,	Degree	WSICRB _k	Degree	WSICRB	Degree	WSICRB	Degree
1	Jerry Creek - Colorado River	0.294	Low	0.702	Good	0.875	High	0.749	Relatively Moderate	0.606	Low
2	Big Salt Wash - Colorado River	0.260	Low	0.628	Moderate	0.875	High	0.822	Relatively Low		Low
3	Sink Creek - Colorado River	0.142	Very Low	0.728	Good	0.971	Extremelly High	0.847	Relatively Low		Low
4	Outlet Gunnison River	0.094	Very Low	0.700	Good	0.971	Extremelly High	0.833	Relatively Low	0.481	Very Low
	96 Antic and a Come		and the second		Line Com					the fine the	
	Avg.	0.198	Very Low	0.689	Moderate	0.923	High	0.813	Relatively Low	0.565	Low

WSICRB							
Degree	Value						
Extremelly High	<i>WSICRB</i> > 0.91						
High	0.81 < WSICRB <= 0.90						
Moderate	0.71 < WSICRB <= 0.80						
Low	0.51 < WSICRB <= 0.70						
Very Low	0.31 < WSICRB <= 0.50						
Extremely Low	<i>WSICRB</i> < 0.30						

Implementation of the WSICRB

LINCOLN INSTITUTE

Information limitations and Results interpretation challenges.

The most relevant challenges in any study region where the WSICRB was implemented have to do with the information for the estimation of values necessary to calculate each component, of which stand out: Annual Water Demand, Annual Water Availability, Water Quality information, Available Information from Users with potable water supply.

The challenges of interpreting comparative WSICRB results from one region to another are many. the most convenient way to compare results and make it an appropriate exercise, could only be done in those regions that have the same number of components and the same components, this with the aim of being objective in the detailed discussion.

Conclusions of the Proposal and development of the WSICRB

- The WSICRB was designed, proposed, and implemented in Grand Junction, Colorado which are in Upper Colorado basin.
 - The methodology for the construction of the WSICRB evaluated and used available official information.
 - The water resource is quantified under a h
 - The proposed index is designed to evaluate at least three indicators and there is no maximum number of indicators that can be added.
 - The WSICRB can be replicated in any of the country's watersheds, at any level, even with different indicators in each region
 - Partial preliminary results show that in the Grand Junction region, there is "Low Water Security" with a WSICRB value of 0.565.
 - The WSICRB proposed in this research project is an initial attempt to quantify water security by hydrological basin in the Colorado River basin.

CONTACT

Paul Hernández Romero, PhD. Member of the UNESCO-UDLAP Chair in hydrometeorological risk and Independent Consultant E-mail: paul.hernandez@udlap.mx

Ryan Lima, PhD. Babbit Center for Land and Water, Lincoln Institute of Land Policy and Northern Arizona University E-mail: Ryan.Lima@nau.edu

LINCOLN INSTITUTE OF LAND POLICY

75 YEARS

