

Soil Moisture Observations to Support Water Management in the Upper Yampa: Accomplishments and Next Steps

CW3E: Marty Ralph, **Anna Wilson**, El Knappe, Rob Hartman, Lisa Katz, Jacob Morgan, Ming Pan, Edwin Sumargo Yampa Valley Sustainability Council: Michelle Stewart, Madison Muxworthy, Tim Sullivan, Nicole Pepper Colorado Mountain College: Nathan Stewart

12th Annual Upper Colorado River Basin Water Forum Colorado Mesa College, Grand Junction, CO, 31 Oct 2023

Photo courtesy of Chris Hylen

COLORADO Colorado Water Conservation Board

Department of Natural Resources

Upper Yampa Soil Moisture Monitoring Network

Upper Yampa Soil Moisture Monitoring Network

Key Sponsors:

Upper Yampa Water Conservancy District Colorado River District Colorado Water Conservation Board

Goal: Establish new long-term soil moisture measurements to provide data and scientific insight on the reduction of snowmelt runoff by dry soils

Phase II Components:

- Install 8 additional soil moisture monitoring stations.
- Replicate Phase I data dissemination methods to make data readily and openly accessible to water managers and users.
- With stakeholder input, demonstrate station utility in context of other observations in the basin.

River Basin

Elevation (m)

<2000

2000

2500 2750

3000

3250

>3250

Soil Moisture Monitoring Network Goals

- Understand water supply during a changing climate
 - Establish a baseline for long term monitoring and future incorporation into hydrologic models
- Understand how soil moisture and snowpack relates to spring runoff and river flows
- Provide situational awareness to water managers and the community
- Provide data that can be used for research applications and improving process-based understanding

Station Siting

Cluster Analysis

Cluster	%	Summary
1	3.8	highest precip/elevation/slope, wide range of aspects, scrub, less dense forest
2	20	low-mid precip, low/mid elevation, forested, S/W aspect, low-mod slope,
3	16	low precip/elevation/slope, NE-SE facing, pasture/developed
4	8.6	low-mid precip, low/mid elevation, moderate slopes higher and more extreme when compared to similar clusters, S/W facing, forested
5	19	lowest-mid precip, low/mid elevation, lower slopes, E facing, mix of land cover
6	15	low precip/elevation/slope, W-facing, developed land/pasture
7	9.8	mid/high precip/elevation, some higher slopes, S/W facing, less dense forest
8	7.8	mid/high precip/elevation, some higher slopes, N/E facing, less dense forest

Upper Colorado

Station Siting

Additional considerations over the cluster analysis included:

- Distribute sites across elevations and spatially throughout the watershed
- Prioritize stations that were within the CBRFC midelevation zone 6500-8500 ft (1981-2590 meters)
- Incorporate stakeholder and partner feedback

Existing Hydrometeorological Stations

12 SNOTEL Stations

O 3 including soil moisture

■ Lynx Pass (607): since **2002**

■ Lost Dog (940): since **1999**

■ <u>Dry Lake (457)</u>: since **2003**

 Storm Peak Lab (various aerosol and meteorological sensors)

2 CoAg (ET and plant water use)

36 USGS Stations

Station Installation

Location: Upper Yampa Headwaters

40.22171, -106.86308

Elevation: 9488 ft/ 2982m

Measured Variables -in near real time:

2-minute data

Soil Temp and Moisture at 6 depths:

O 2, 4, 6, 8, 20, 40 inches

- Air Temperature
- Relative Humidity
- Solar Radiation
- Precipitation
- Wind Speed and Direction at 10m
- Air Pressure
- Fuel Temperature and Moisture

15-minute data

Snow Depth

Project Partnerships

- Colorado Basin River Forecast Center (CBRFC)
- Aspen Global Change Institute (AGCI)
- United States Forest Service (USFS)
- USDA- National Resources Conservation Service (NRCS)

USDA-NRCS Soil Pits

SKI: Observations in Water Year 2023

Fall wet-up period

- Initial soil moisture wet-up at 10-cm depth in Oct and at 50-cm depth in early Nov.
- Snow accumulation in early Nov at nearby SNOTEL Lynx Pass.

Spring snowmelt period

- Apparent snowmelt (SWE decrease) Apr-May.
- Soil moisture upticks across depths.
- Rapid streamflow and reservoir storage increases.

Station Installation Status - 2023

USDA-NRCS: SNOTEL

- Rabbit Ears SNOTEL soil stack installed June 2023
- Additional soil stacks added at SNOTELs next summer.

CW3E/YVSC/CMC Sites

- One-two stations installed this coming week (Nov 2023)
- 6-7 stations to be installed summer
 2024 scouting with USFS complete

Summary – Next Steps

Installation and Data Utility

 One station available in NRT on CW3E website, MesoWest, NOAA PSL, MADIS

 Continuing analysis for the upcoming water year

Coordination with other networks

- Dashboards -> including one in prep with Upper Yampa
- iRON (AGCI), SNOTEL (USDA-NRCS)
- Explore connections via other events in the region

