# Water Quality and Drinking Water Regulations

Kari Sholtes PE PhD

Colorado Mesa University Partnership Program University of Colorado Boulder

February 25, 2020





http://www.divexprt.com/HDRphotography/Drones/ColoradoFall2015/GrandJunction/GrandJunction.html https://www.gettyimages.com/videos/grand-junction-colorado?sort=mostpopular&phrase=grand%20junction%20colorado

#### Non-point Sources of Pollution



<u>http://www.riverexchange.org/wildfire/ https://news.medill.northwestern.edu/chicago/video-sewage-in-the-chicago-river/</u>
<u>https://www.ibtimes.co.in/delhi-inhales-toxic-air-dangerous-fine-particles-level-exceeds-recommended-limit-by-21-times-629702</u>

### Water Quality: Non-point sources

#### Multiple discharge points

- Storm water
  - Oil, grease
  - Metals
  - Chemicals
  - Pathogens
  - Particles
  - Salts
- Agricultural runoff
  - Fertilizers
  - Pesticides
  - Organics
  - Pathogens
  - Particles
  - Salts

- Combined sewers
  - Combined sewer overflow (CSO)
  - Storm water + organics + more pathogens
- Atmospheric deposition
  - Chemicals
  - Metals
  - Particles
- Natural systems
  - Particles
  - Organics
  - Pathogens
  - Heat





https://www.kunc.org/post/across-midwest-farm-fields-pesticide-exposure-tracked-unevenly-or-not-all#stream/0 https://www.tripadvisor.com/Attraction Review-g33342-d1868448-Reviews-Penny Hot Springs-Carbondale Colorado.html

# Water Quality: Point Sources

Industrial wastes

Oil refineries, mills, chemical/electronics/a utomobile manufacturers

- Oil, grease
- Metals
- Chemicals
- Organics
- Pathogens
- Particles
- Salts
- Heat

Municipal sewage

Both domestic sewage and industrial wastes

- Chemicals
- Organics
- Salts

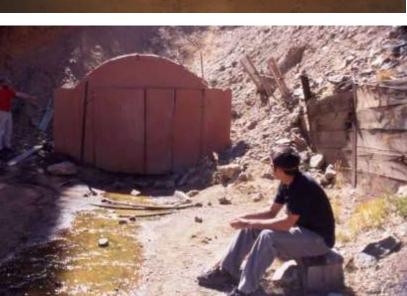
Power generation facilities

- Heat
- Metals
- Nutrients
- Particles



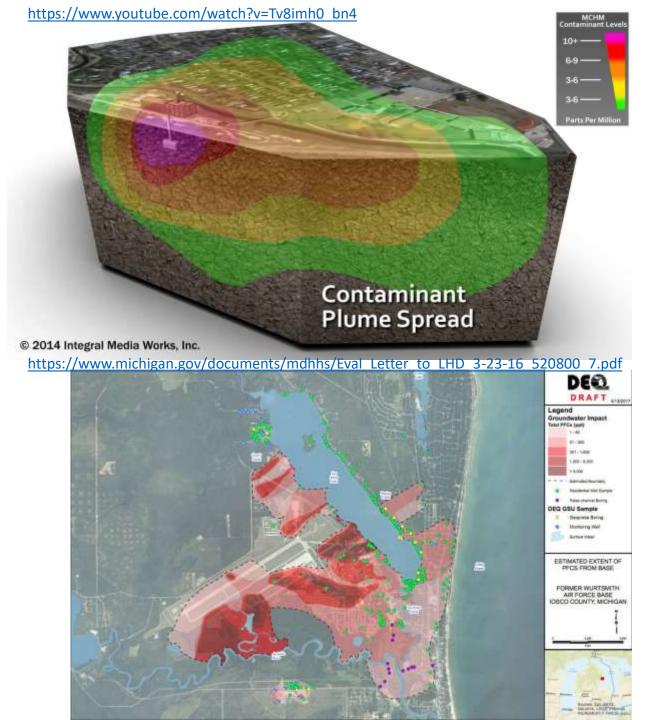







https://www.thrillist.com/news/nation/truck-spills-liquid-chocolate-on-arizona-highway https://www.nrdc.org/stories/water-pollution-everything-you-need-know

Abandoned mines


- Point source
- Non-point source





Groundwater contamination

- Point source
- Non-point source



Key water quality concerns for ecosystems Man-made or man-introduced contaminants

- Oxygen-demanding material
- Nutrients
- Invasive species
- Pathogenic microorganisms
- Suspended solids
- Salts
- Metals
- Inorganic chemicals
- Organic compounds
- Radionuclides
- Emerging contaminants
  - endocrine-disrupting compounds
  - pharmaceutical and personal care products
  - microplastics
- Heat
- Disinfectants
- Disinfection byproducts





Key water quality concerns for the outdoor industry

Man-made or man-introduced contaminants

- Oxygen-demanding material
- Nutrients
- Invasive species
- Pathogenic microorganisms
- Suspended solids
- Salts
- Metals
- Inorganic chemicals
- Organic compounds
- Radionuclides
- Emerging contaminants
  - endocrine-disrupting compounds
  - pharmaceutical and personal care products
  - microplastics
- Heat
- Disinfectants
- Disinfection byproducts

https://www.coloradocanyonsassociation.org/programs



Key water quality concerns for industrial and agricultural users Man-made or man-introduced contaminants

- Oxygen-demanding material
- Nutrients
- Invasive species
- Pathogenic microorganisms
- Suspended solids
- Salts
- Metals
- Inorganic chemicals
- Organic compounds
- Radionuclides
- Emerging contaminants
  - endocrine-disrupting compounds
  - pharmaceutical and personal care products
  - microplastics
- Heat
- Disinfectants
- Disinfection byproducts

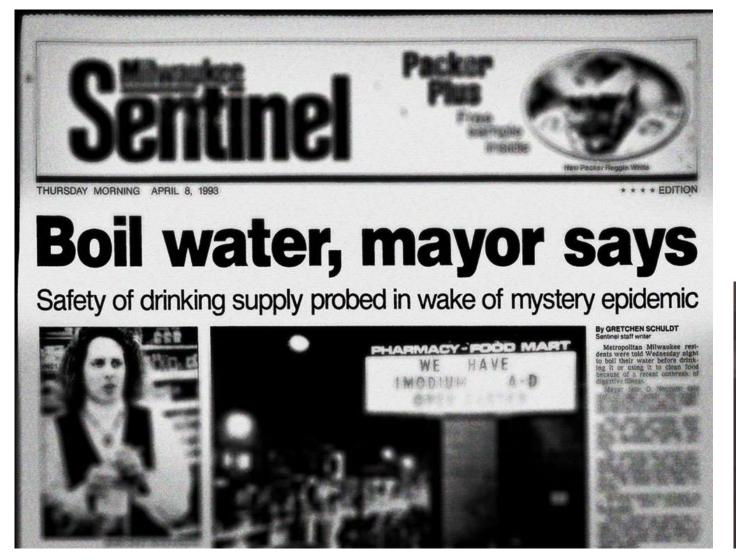


Key water quality concerns for drinking water Natural and man-made contaminants

- Oxygen-demanding material
- Nutrients
- Invasive species
- Pathogenic microorganisms
- Suspended solids
- Salts
- Metals
- Inorganic chemicals
- Organic compounds
- Radionuclides
- Emerging contaminants
  - endocrine-disrupting compounds
  - pharmaceutical and personal care products
  - microplastics
- Heat
- Disinfectants
- Disinfection byproducts






# Background of Drinking Water Regulations

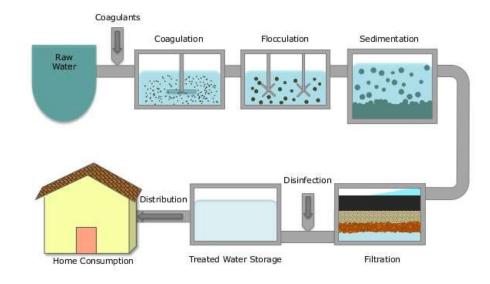
- 1974 Congress enacted the Safe Drinking Water Act (SDWA)
  - Authorizes the EPA to promulgate health-based drinking water standards
  - Requires drinking water to meet maximum contaminant levels (MCLs)
    - physical, chemical, biological, and radiological substances
- EPA was slow to implement
- 1986 EPA set MCLs for 23 contaminants and had failed to prescribe any treatment techniques
- Many states received variances and exemptions under the SDWA
- A majority of public water systems did not meet minimal national standards

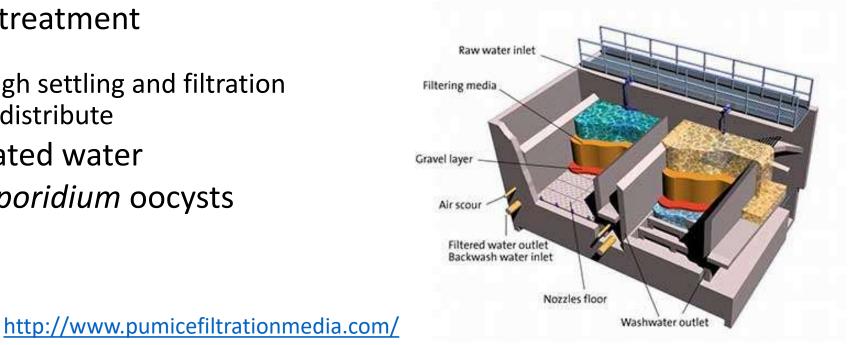
# Background of Drinking Water Regulations

- SDWA amendment 1986
  - Required to regulate 25 contaminants every 3 years
- Surface Water Treatment Rule (SWTR) 1989
  - Set disinfection requirements, filtration criteria, and new MCL goals for pathogens
- SDWA amendment 1996
  - Repealed mandate of regulating 25 contaminants every 3 years
  - Required to select > 5 contaminant every 5 years
  - Required to rely on heath data and risks (and good science)

# Cryptosporidium parvum outbreak




- Milwaukee, WI
- April 1993, 400,000 people became ill
- 104 people died
- Contaminated city water supply system

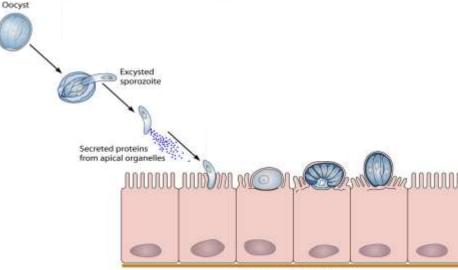



#### Water Treatment Process


# Milwaukee Water Treatment

- Severe spring storms
- Turbidity and bacteria increased in Lake Michigan
- Two water treatment plants intake in Lake Michigan
- Conventional water treatment
  - Make particles big
  - Remove them through settling and filtration
  - Disinfect water and distribute
- High turbidity in treated water
- Particle and *Cryptosporidium* oocysts breakthrough



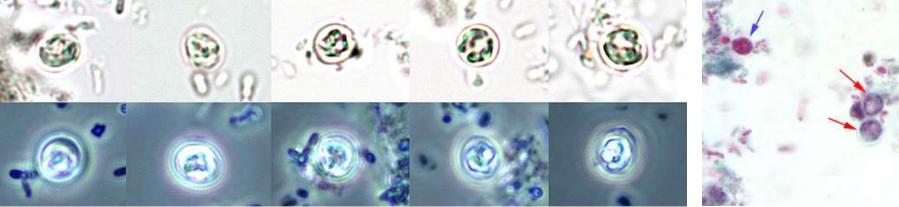



# Filtration and Backwashing



# Cryptosporidium parvum

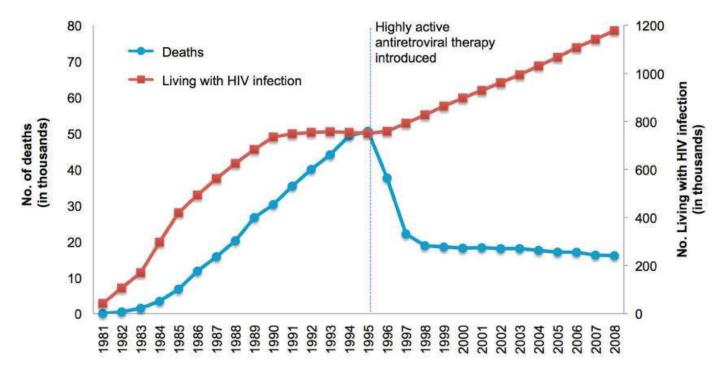
- Low dose (~10 Oocysts) can cause infection
- Causes severe diarrhea
- 1993—1994: 71% of waterborne disease outbreaks caused by Giardia lamblia and Cryptosporidium
- Double walled cyst (Oocysts) can survive chlorine treatment
- Water must be filtered in order to remove *Cryptosporidium*
- Ultraviolet light inactivates Cryptosporidium



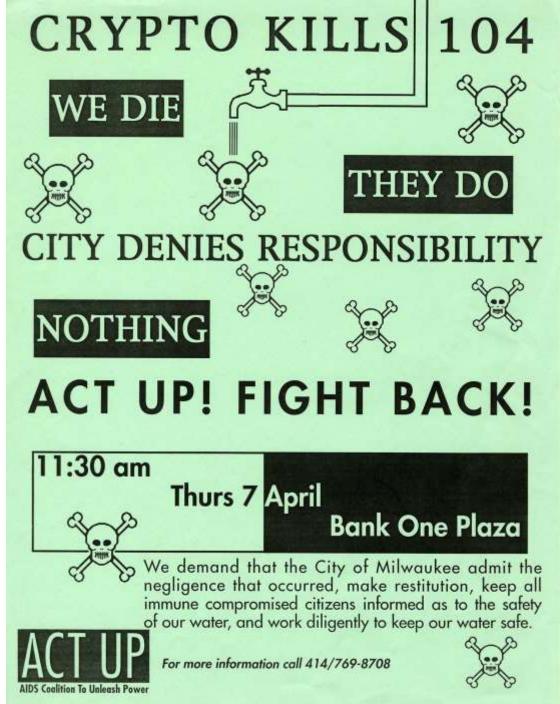










https://waterandhealth.org/healthy-pools/crypto-outbreaks-aquatic-facilities/

https://www.cdc.gov/dpdx/cryptosporidiosis/index.html

#### **Vulnerable Populations**



https://www.drugabuse.gov/publications/researchreports/hivaids/how-does-drug-abuse-affect-hiv-epidemic



# Drinking water regulations related to Crypto

- 1998 Disinfectants and Disinfection Byproducts Rule (and again in 2006)
  - MCL goals and maximum residual disinfectant level goals
- 1999 Interim Enhanced Surface Water Treatment Rule
  - General filtration criteria, sanitary surveys, and enhanced record keeping
  - MCL goal for Cryptosporidium of zero
  - Specific filtration requirements for Cryptosporidium oocysts
- 2001 Filter Backwash Recycling Rule (FBRR)
  - Requires recycled filter backwash water to go through all processes of treatment
  - Filter-to-waste requirement

# Drinking water regulations related to Crypto

- 2002 Long Term 1 Enhanced Surface Water Treatment Rule (LT1ESWTR)
  - Sets a 2-log *Cryptosporidium* removal requirement for systems that filter
- 2006 Long Term 2 Enhanced Surface Water Treatment Rule (LT2ESWTR)
  - Targets additional Cryptosporidium treatment requirements to higher risk systems
  - UV inactivation guidelines for inactivation of *Cryptosporidium*

#### How are regulations set?

#### **Drinking Water Regulatory Process**

- SDWA authorizes EPA to regulate contaminants in water provided by public water systems
  - 1. Identifying contaminants of potential concern
  - 2. Assessing health risks
  - 3. Collecting occurrence data and developing reliable analytical methods necessary to do so
  - 4. Making determinations as to whether a national drinking water regulation is warranted for a contaminant
- Cost-benefit analyses
- Draft rule and final rule
- 6-year review of the rule

# 1) Identifying Contaminants of Potential Concern

- Every five years, EPA is required to publish a list of contaminants known or anticipated to occur in public water systems (~40 to ~200 contaminants each year)
  - the greatest health concern
  - the most vulnerable subgroups (e.g., infants, pregnant women)
- CCL 1 (1998): technical experts of readily available information
- CCL 2 (2005): National Academy of Sciences National Research Council and the National Drinking Water Advisory Council
- CCL 3 (2009) and 4 (2016): public nominations of contaminants and public participation with previous stakeholders
  - CCL 3 and 4: Perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) in drinking water
- After final CCL is published, EPA determines whether or not to regulate at least five contaminants from the CCL in a separate process

<u>https://www.epa.gov/ccl/basic-information-ccl-and-regulatory-determination</u> <u>https://www.nap.edu/catalog/10080/classifying-drinking-water-contaminants-for-regulatory-consideration#toc</u>

# Perfluoroalkyl acids (PFAAs)

- Components of Aqueous Film Forming Foam (AFFF) used by the Air Force to extinguish petroleum fires
- Persistent, bioaccumulative, and toxic (PBT) contaminants
- Water soluble and do not break down in the environment
- Difficult to remove in drinking water treatment







#### PFAAs in Colorado

| Location            | Notes                                                                                                                                |  |  |  |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Boulder Mountain    | Found high PFAS chemical levels at a groundwater well at one of the district's stations. All residents located close to the station  |  |  |  |
| Fire Protection     | have been notified.                                                                                                                  |  |  |  |
| District            |                                                                                                                                      |  |  |  |
| Buckley Air Force   | Found PFAS chemical levels in groundwater wells on the base. Potential off site migration will be investigated. The public will be   |  |  |  |
|                     | notified prior to investigation. No public water systems are known to be impacted. Remedial measures will be taken after the         |  |  |  |
|                     | extent of contamination is determined.                                                                                               |  |  |  |
| Fort Carson         | Found high PFAS chemical levels in groundwater wells on and off the base. All residents located near the base have been notified of  |  |  |  |
|                     | the on base contamination and well sampling events that occurred off-base. No public water system has been impacted. Base is         |  |  |  |
|                     | currently in the process of cleaning up the contamination and notifying off base impacted well owners of PFAS concentrations.        |  |  |  |
| Peterson Air Force  | Found PFAS chemical levels in groundwater wells on the base. All residents located near the base have been notified. Public water    |  |  |  |
| Base                | systems were impacted and are now treating for the chemical; PFAS chemical levels are below health advisory in treated drinking      |  |  |  |
|                     | water. Base is currently in the process of cleaning up the contamination.                                                            |  |  |  |
| Schriever Air Force | Found PFAS chemical levels in groundwater wells on the base. Off base contamination has not been identified. Residents will be       |  |  |  |
| Base                | notified if off base contamination is identified. No public water system has been impacted. Base is currently in the process of      |  |  |  |
|                     | cleaning up the contamination.                                                                                                       |  |  |  |
| South Adams         | PFAS chemical levels are below health advisory in treated drinking water, but the district found higher PFAS chemical levels in some |  |  |  |
|                     | groundwater sources. The district has treatment to remove PFAS chemical and shut down sources with higher PFAS chemical levels.      |  |  |  |
| Sanitation District | Stouldwater sources. The district has treatment to remove in his enermeat and shat down sources with higher in his enermeat terets.  |  |  |  |
| Sugarloaf           | Found PFAS chemical levels in groundwater wells at one of the district's stations. All residents located close to the station were   |  |  |  |
| Volunteer Fire      | notified.                                                                                                                            |  |  |  |
| District            |                                                                                                                                      |  |  |  |
| Suncor              | Found PFAS chemical levels in groundwater wells on site. All residents located near the site have been notified. No public water     |  |  |  |
| Suncon              | system has been impacted. Entity is currently in the process of cleaning up the contamination.                                       |  |  |  |
| LLC Air Force       |                                                                                                                                      |  |  |  |
| U.S. Air Force      | Found PFAS chemical levels in groundwater wells on the base. All residents located near the base have been notified. No public       |  |  |  |
| Academy             | water system has been impacted. Base is currently in the process of cleaning up the contamination.                                   |  |  |  |

# 2) Assessing Health Data

- Goal is to estimate a contaminant health reference level or HRL
  - HRL is the benchmark against which to conduct the initial evaluation of the occurrence data
- Data collection of all relevant peer-reviewed, published studies
- Guidelines for cancer assessments: Guidelines for Carcinogen Risk Assessment and the Supplementary Children's Guidance
- Risk-specific doses (mg/kg of body weight per day)
  - estimated oral exposures of lifetime excess risk levels of one cancer in ten thousand (10<sup>-4</sup>) to one cancer in a million (10<sup>-6</sup>)

# 2) Assessing Health Data: HRL

- Health reference level, HRL = [(RfD x BW)/DWI] x RSC
  - RfD, estimate of the daily amount of a chemical exposure that does not cause adverse health effects over a lifetime
    - 10<sup>-4</sup> to 10<sup>-7</sup> risk increase is acceptable
  - RfD from epidemiology or toxicology studies
  - BW, Body Weight for an adult
  - DWI, Drinking Water Intake
  - RSC, Relative Source Contribution is the level of exposure from drinking water when compared to other sources (e.g., food, ambient air)

# Perfluoroalkyl acids (PFAAs)

- Toxic to liver, immune, endocrine, and male reproductive systems
- Toxic to developing fetus and neonate
- Low-dose effects include persistent delays in mammary gland development and suppression of immune response
- Health effects include high levels of fat and liver enzymes in blood, decreased vaccine response, and decreased birth weight
- HRL = 70 ng/L (70 ppt)

# 3) Collecting Occurrence Data

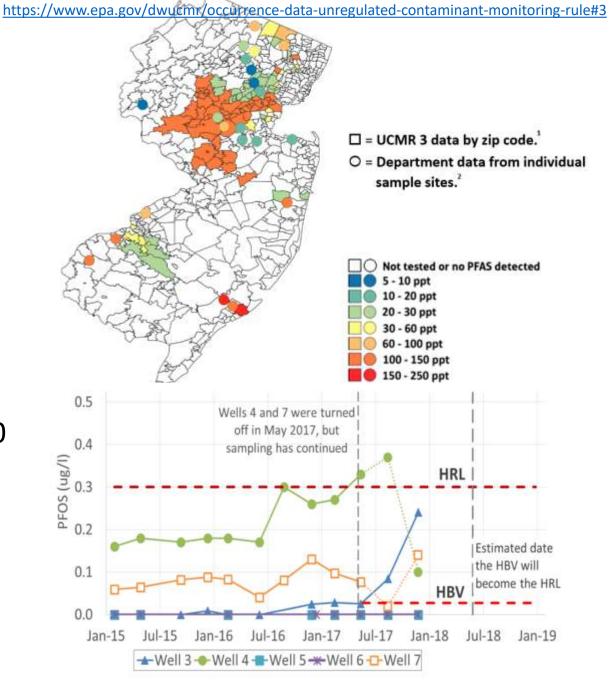
SDWA directs EPA to collect nationwide occurrence data for unregulated contaminants

- Unregulated contaminant monitoring rule (UCMR)
- Requires water systems operators to test for no more than 30 contaminants
- Monitoring of all public water systems serving >10,000 persons, plus a representative sample of smaller systems

Other data sources:

- USGS Pesticide Use Maps
- Toxics Release Inventory (TRI)
- USGS National Water Quality Assessment (NAWQA)
- VOC National Synthesis
- USGS Stormwater Studies
- Community Water System Survey (CWSS)

# 3) Collecting Occurrence Data


Data collection is designed to determine

- the total number of systems and the total population served by monitored systems
- the number and percentage of systems with
  - ≥1 observed detection that has a concentration >0.5\*HRL and
  - ≥1 observed detection that has a concentration >HRL
- the number of people and percentage of the population served by systems with
  - ≥1 observed detection that has a concentration >0.5\*HRL and
  - ≥1 observed detection that has a concentration >HRL

# PFOS and PFOA

#### • UCMR 3 (2012)

- 5,000 water systems
- January 2013 and December 2015
- 63 water systems (1.3%) serving an estimated 5.5 million individuals detected PFOA and/or PFOS at levels above EPA's health advisory level of 70 ppt (separately or combined)



Note: Non-detects displayed as 0 ug/l.

https://pfasproject.com/bemidji-minnesota/

# 4) Making the determination to regulate

Requirements for regulation of a contaminant

- 1. A contaminant may have an adverse health effect;
- 2. It is known to occur or there is a substantial likelihood that it will occur in water systems at a frequency and at levels of public health concern; and
- 3. In the sole judgment of the Administrator, regulation of the contaminant presents a meaningful opportunity for reducing health risks.

Feb 20, 2020: From CCL 4 (2012) and UCMR 3 (2016) the EPA is making the preliminary determination to regulate perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) in drinking water

#### After determination to regulate

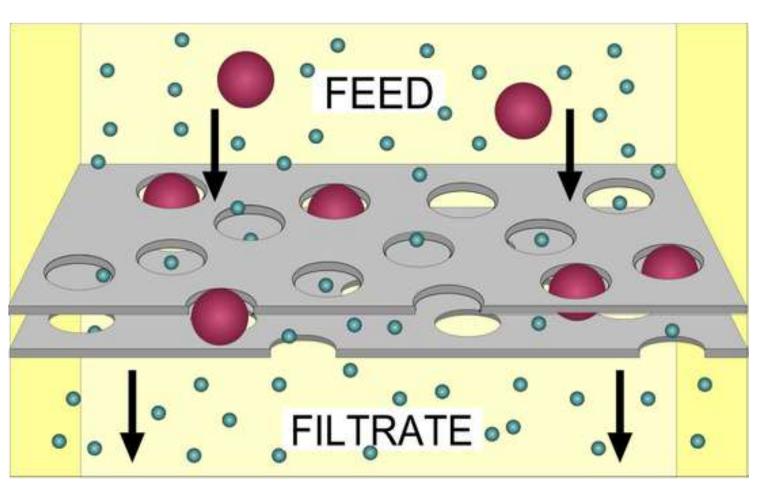
- EPA is required to propose a rule within 24 months
- EPA is required to promulgate a national primary drinking water regulation within 18 months after the proposal
- EPA may extend the deadline for up to nine months

# Setting the health-based standard MCLG

- EPA sets a maximum contaminant level goal (MCLG) for every contaminant
- MCLG is the maximum level of a contaminant
  - No known or anticipated adverse effect on human health
  - Non-enforceable public health goals
- MCLG is set considering the adverse health risk to sensitive subpopulations

# Setting the health-based standard MCLG

Dependent on type of contaminant


- Pathogenic microbial contaminants: MCLG is zero
- Carcinogenic chemical contaminants:
  - MCLG is zero if chemical may cause cancer AND if there is no safe dose
  - If a safe dose can be determined, MCLG is set at the safe level
- Non-carcinogenic chemical contaminants:
  - MCLG based on "No-observed-adverse-effect level" (NOAEL), a "lowest-observedadverse-effect level" (LOAEL)

#### Setting health-based standards MCL

- SDWA directs EPA to set the MCL as close to the MCLG as is "feasible" using best available technology or other means available, taking costs into consideration
- Regulations must include analytical methods and feasible treatment methods



#### Economical and technical feasibility



- Expenses to comply with new drinking water regulations
  - Install and operate contaminant removal technologies
  - Water monitoring and analyzing water samples
  - Management and oversight costs
  - Increased household water bill
- Avoided damages (morbidity and mortality) of regulatory action
  - Qualitative, quantitative, and monetary assessment

### MCLs and Cost-Benefit Analyses

EPA, at the discretion of the Administrator, may establish less stringent MCLs if any of these apply:

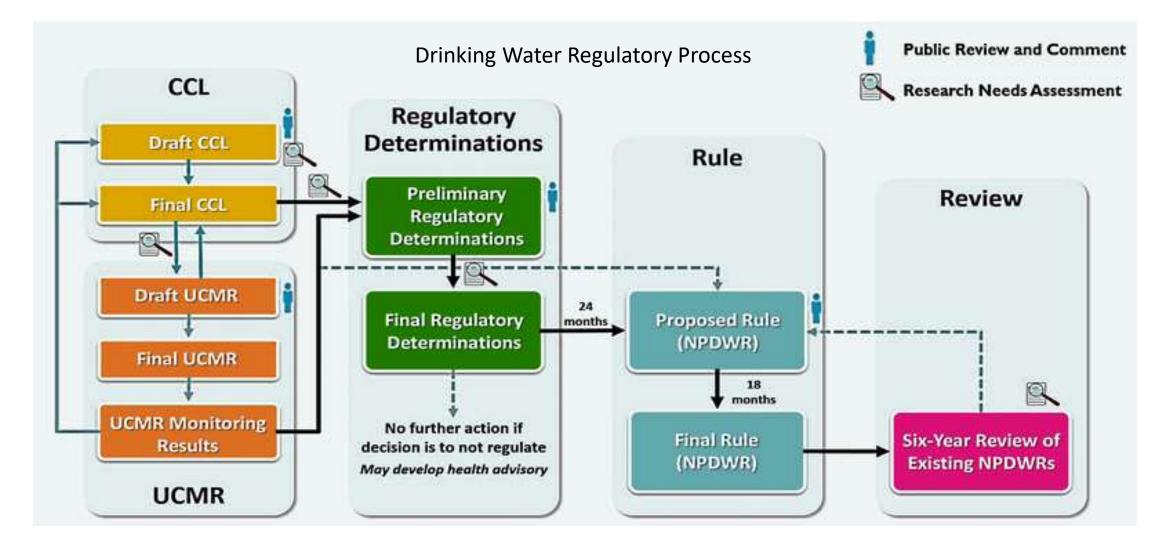
- The costs of achieving the lowest feasible level are not justified by its benefits
- Achieving the MCL could result in an increase in health risks from other contaminants
- Meeting the MCL may interfere with the treatment processes used to comply with other SDWA regulations

For *Cryptosporidium*, the SDWA does not allow EPA to use cost and benefits to establish a treatment technique requirement or MCL

#### Treatment techniques

- Cannot measure contaminant at concentrations relevant to public health (i.e., *Crypto*)
- Enforceable procedure or level of technological performance to ensure control of a contaminant
- Examples
  - Surface Water Treatment Rule (filtration and disinfection)

#### **Drinking Water Regulatory Process**


- SDWA authorizes EPA to regulate contaminants in water provided by public water systems
  - 1. Identifying contaminants of potential concern
  - 2. Assessing health risks
  - 3. Collecting occurrence data and developing reliable analytical methods necessary to do so
  - 4. Making determinations as to whether a national drinking water regulation is warranted for a contaminant
- Cost-benefit analyses
- Draft rule and final rule
- 6-year review of the rule

# PFOS and PFOA moving forward

EPA's Action Plan identifies efforts related to evaluating PFAAs for potential regulation under SDWA

- developing new analytical test methods to support monitoring of more PFAS and at lower levels (EPA has validated test methods for 18 PFAS)
- 2. preparing to use new test methods to include other PFAAs in the next UCMR in 2020 to assess their occurrence, and
- 3. expanding PFAAs toxicity information and providing more information about PFAAs treatment and costs

# Thank you!



# All Drinking Water Regulations

| Contaminant Type       | Regulation                                                                                                                                                                                                                                                                                                |  |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Chemical contaminants  | <ul> <li><u>Arsenic rule</u></li> <li><u>Chemical contaminant rules</u></li> <li><u>Lead and copper rule</u></li> <li><u>Radionuclides rule</u></li> <li><u>Variance and exemptions rule</u></li> </ul>                                                                                                   |  |
| Microbial contaminants | <ul> <li><u>Aircraft drinking water rule</u></li> <li><u>Ground water rule</u></li> <li><u>Stage 1 and stage 2</u></li> <li><u>disinfectant/disinfection byproducts rule</u></li> <li><u>Surface water treatment rules</u></li> <li><u>Total coliform rule and revised total coliform rule</u></li> </ul> |  |
| Right-to-know rules    | • <u>Consumer confidence report rule</u> • <u>Public notification rule</u>                                                                                                                                                                                                                                |  |

#### NPDWR Secondary Standards

| Contaminant                  | Secondary MCL                 | Noticeable Effects above the Secondary MCL                                                     |
|------------------------------|-------------------------------|------------------------------------------------------------------------------------------------|
| Aluminum                     | 0.05 to 0.2 mg/L <u>*</u>     | colored water                                                                                  |
| Chloride                     | 250 mg/L                      | salty taste                                                                                    |
| Color                        | 15 color units                | visible tint                                                                                   |
| Copper                       | 1.0 mg/L                      | metallic taste; blue-green staining                                                            |
| Corrosivity                  | Non-corrosive                 | metallic taste; corroded pipes/<br>fixtures staining                                           |
| Fluoride                     | 2.0 mg/L                      | tooth discoloration                                                                            |
| Foaming agents               | 0.5 mg/L                      | frothy, cloudy; bitter taste; odor                                                             |
| Iron                         | 0.3 mg/L                      | rusty color; sediment; metallic<br>taste; reddish or orange staining                           |
| Manganese                    | 0.05 mg/L                     | black to brown color; black staining;<br>bitter metallic taste                                 |
| Odor                         | 3 TON (threshold odor number) | "rotten-egg", musty or chemical smell                                                          |
| рН                           | 6.5 - 8.5                     | low pH: bitter metallic taste;<br>corrosion<br>high pH: slippery feel; soda taste;<br>deposits |
| Silver                       | 0.1 mg/L                      | skin discoloration; graying of the white part of the eye                                       |
| Sulfate                      | 250 mg/L                      | salty taste                                                                                    |
| Total Dissolved Solids (TDS) | 500 mg/L                      | hardness; deposits; colored water;<br>staining; salty taste                                    |
| Zinc                         | 5 mg/L                        | metallic taste                                                                                 |