Resizabel 3-D Printer Enclosure to Contain Aerosol Emissions that are Harmful for the Human Body

Alan Carrasco¹, Trey Lambrecht¹, Lane Sanders¹
Vance Lab located in Sustainability, Energy, and Environment Complex (SEEC)
¹ University of Colorado Boulder, Boulder, CO

Background

- 3-D printing emits aerosols, such as Volatile Organics Compounds (VOCs) and Ultrafine Particles (UFPs,) that can be harmful if inhaled
- Enclosures are used to capture aerosol emissions but not a single enclosure in the market can resize to any 3-D printer size and brand

Project Impact

- Protects users from inhaling harmful aerosols
- Provides safety for surrounding public
- Enhances air quality of an indoor environment
- Provides the 3-D printing society with a user-friendly protective product

Project Objective

Design and construct a resizable enclosure that will capture 90% of the number concentration of aerosols produced by tabletop appliances with a volume range of 8 to 27 cubic feet

Design Requirements

- Resizable in 3 axes with dimensions of 2 ft, 2.5 ft, and 3 ft
- Accommodate 95% of tabletop 3-D printers
- Enclosure must be lightweight
- Easy accessibility into the inside of the enclosure and filtration system
- Capture 90% of the particles larger than than 0.3 µm per unit volume

Acknowledgments

All Metals and SSD Plastics

References

Panu Karjalainen, Sampo Saari, Heino Koulutajarinen, Tapio Kalliohaka, Arno Taipale & Topi Ronkoko (2017) Performance of ventilation filtration technologies on characteristic traffic related aerosol down to nanocluster size, Aerosol Science and Technology, 51:12, 1398-1408
Design Evaluation

Experimentally test the enclosure’s filtration efficiency

1. Enclose 3-D Printer
2. Print part with test parameter*
3. Collect emissions outside of enclosure in room chamber
4. Analyze data and repeat for different test parameter*

* Test Parameters:
- Test different filaments (ABS, PETG, PCPTE)
- Test the number of filtration systems being used in parallel (maximum of four)
- Test different enclosure volumes (8 ft³, 15 ft³, and 27 ft³)
Results

Experimental vs Theoretical Model

Experimental data of aerosol emissions produced by ABS filament within an airtight 34 m3 chamber without an enclosure.

Theoretical data of aerosol emissions produced by ABS filament within an airtight 34 m3 chamber while using an enclosure with a HEPA filter (filtration efficiency >99%, Karjalainen et al., 2017)
This project was $1,129.15, which is $870.85 under our $2000 budget.
Conclusions/Next Steps

Future enclosure improvements
• Lightweight material
• Magnetic system
• Resizable system

Market Potential
• Only resizable enclosure on market
• Parts have the ability to be mass produced
• Secondary use as a room air purifier