Semi-Aquatic Continuously Roving Utility Bot (S.C.R.U.B)

Josiah Wilson

Seth Mewhinney

Isaac Zepeda

Max Doose

Project Sponsor: Tony Ibarra Colorado Mesa University

PROJECT OBJECTIVES

Build an autonomous robot capable of removing 90-95% of the algae build up on the top of the plate settler assemblies at Ute Water Conservancy District

PROJECT REQUIREMENTS

- Remove 90-95%
 of visible algae build up
- Cleans one plate every 3 days
- Weigh less than 45 lbs
- Enclosure meets IPX4 rating
- Can last 3 hours on one charge
- Capability of being autonomous minus movement from one plate assembly to the next

RESULTS

- Averaging 96% removal rate
- Cleans 6 plates a day
- Lasts 3 hours on one charge
- Total project weight of 7.4 lbs
- Enclosure Meets IP46 standard
- Barth PLC to automize

CONCLUSIONS

- Parts are easily replaceable
- Water will not compromise enclosure
- Current state of the product is finishing programming and testing

Semi-Aquatic Continuously Roving Utility Bot (S.C.R.U.B): Design Evaluation

Semi-Aquatic Continuously Roving Utility Bot (S.C.R.U.B): Results

Table 1: Design requirements and test plan method for evaluation

Requirement	Target Value	Test Method
Fully autonomous	PASS	User testing
Remove 90-95% of algae	95%	User testing
Under 40 lbs	10 lbs	User testing
Waterproof to IP-X4M standard	PASS	User testing
Device works in operating conditions	PASS	User testing
Cleans plate settlers within 180 days		
(one plate assembly every 3 days)	1 day	Hand calculations and user testing
Labor cost	\$0	Hand calculations and user testing
3D printed wheels	PASS	User testing
Pipe-switcher mechanism	PASS	User testing
IR proximity sensor	1 in	User testing
Bump switch	PASS	User testing
Pipe-switcher switch	PASS	User testing

Table 2: Sediment/Algae Removal Percentage

	Trial 1	Trial 2	Trial 3
Sites Tested	4	7	9
Area Covered (Squares/Division)	5600	9800	12600
Uncleaned Instances recorded			
(Squares/Division)	183	200	344
Algae/Sediment removal (%)	96.7	98	97.3

Figure 1: UV-C LED Output vs Absorption in Water Samples Collected
After Agitation on the Settler Plates

Semi-Aquatic Continuously Roving Utility Bot

(S.C.R.U.B): Conclusions

Table 3: Current Project Budget

Budget:					
Item:	Estimated:	Actual:	Variance		
Total Budget:	\$6,000.00	\$6,000.00			
Testing and Prototyping	\$300.00	\$325.46	+/- \$100		
Final Product	\$2,000.00	\$1,014.80	+/- \$500		
Spent (YTD):	\$2,300.00	\$1,340.26			
Remainder:	\$3,700.00	\$4,659.74			

