Mechanical Engineering University of Colorado Boulder

Engineered Application Device For Graffiti Removal

Scan me

For team video

University of Colorado Boulder | Colorado Mesa University Ethan Davis • Kassidi Day • David Hale • Dylan Hallett

Background

Design Results

- Portability and weight meet requirements
- ✓ Storage tank holds & mixes 1.5 gal. of mixture
- ✓ Maintains desired temp ±5°C for 2 hours
- x Power required unconfirmed (see next steps)
- x Dispensing of mixture unverified (see next steps)

Next Steps

- Add trigger to applicator head that actuates CO₂
- Test system to ensure that applicator head ejects and evenly spreads mixture onto surface at 1.25 g/in²
- Implement small battery-powered motor fo mixing
- Test whole system
 - *Promposal on the Colorado National Monument
 - **Figure of test done by CMU Chemistry Team

Design

- 3 Pumping Mechanism
- Dispenses mixture using CO₂ and a manual pneumatic cylinder
- Compressed gas power used to pump mixture

4 Mixing Mechanism

- Mixes starch mixture at graffiti site
- Power required for mixing by battery smaller than common handdrill battery

5 Frame Pack

Portable for off-grid use with system weight less than 50 lb

Starch Mixture — Shock Method 33% Starch Solution 0.5 kg Starch 25°C 16 C H₂O 5.5 C H₂O 33% Starch Solution 16 C H₂O 9% Starch Solution

University of Colorado Boulder | Colorado Mesa University
Ethan Davis • Kassidi Day • David Hale • Dylan Hallett

1

Detachable Applicator Head

Next Steps

- Add trigger mechanism to applicator handle
- Test system to ensure that applicator head ejects and evenly spreads mixture onto surface at 1.25 g/in²

X Dispensing of mixture unverified

COLORADO MESA UNIVERSITY

University of Colorado Boulder | Colorado Mesa University
Ethan Davis • Kassidi Day • David Hale • Dylan Hallett

9

Starch Mixture / Storage Tank

Slurry- Time vs Temperature

Water- Time vs Temperature

Mixture- Time vs Temperature

University of Colorado Boulder | Colorado Mesa University
Ethan Davis • Kassidi Day • David Hale • Dylan Hallett

3 Pumping Mechanism

Next Steps

- Implement trigger to actuate CO₂
- Test whole system

Dispensing of mixture unverified

COLORADO MESA UNIVERSITY

University of Colorado Boulder | Colorado Mesa University
Ethan Davis • Kassidi Day • David Hale • Dylan Hallett

4

Mixing Mechanism

9 min.

mixing time

1 min.

mixing time

Mixes 1.5 gallons of starch mixture

Power required unconfirmed

Next Steps

 Implement small battery-powered motor to agitate swing mixer

COLORADO MESA UNIVERSITY

University of Colorado Boulder | Colorado Mesa University
Ethan Davis • Kassidi Day • David Hale • Dylan Hallett

5 Frame Pack

The base of the frame pack was adjusted to reduce the moment felt by the user.

University of Colorado Boulder | Colorado Mesa University
Ethan Davis • Kassidi Day • David Hale • Dylan Hallett

Budget & Next Steps

Budget:

Component Category	Cost
Applicator Head	\$ 292
Starch Mixture/Storage Tank	\$ 504
Pumping Mechanism	\$ 776
Mixing Mechanism	\$ 40
Frame Pack	\$ 65
Total	\$1,677
Unused from Unconventional Energy Fund	\$1,823

Next Steps

- Add trigger to applicator head that actuates CO₂.
- Test system to ensure that applicator head ejects and evenly spreads mixture onto surface at 1.25 g/in².
- Implement small battery-powered motor for mixing.
- Manufacture necessary components.
- Test whole system.

Timeline:

