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1.1 - Newton’s Laws of Motion 

• 1st Law
“an object will remain at rest or in uniform motion 
in a straight line unless acted upon by an external 
force.”

• 2nd Law 
A force will cause an object to accelerate in the 
direction of the net force, and the magnitude of 
the acceleration will be proportional to the net 
force but inversely proportional to the mass of the 
object

• 3rd Law
For every action, there is an equal and opposite 
reaction.



1.2 Units

Fundamental Units



Base Units

• All unit systems are based around seven base units
• Important base units for Statics 
• Mass
• Length
• Time

• All other units of measurement are formed by 
combinations of the base units.



1.3 Forces

• At its simplest, a force is a “push or pull”



Types of Forces

• Point Force
• Body Force
• Reaction Force
• Distributed Force



1.4 Problem Solving

• Statics may be the first course you take where you 
are required to decide on your own how to 
approach a problem.
• Choosing a strategy gets easier with experience.
• For equilibrium problems, there are seven general 

problem-solving steps



Steps to Statics Problem Solving

1. Read and understand the problem.
2. Identify what you are asked to find and what is given.
3. Stop, think, and decide on an strategy.
4. Draw a free-body diagram and define variables.
5. Apply the strategy to solve for unknowns and check solutions.
6. Equations

a. Write equations of equilibrium based on the free-body 
diagram.

b. Check if the number of equations equals the number of 
unknowns. If it doesn’t, you are missing something. You may 
need additional free-body diagrams or other relationships.

c. Solve for unknowns.
7. Conceptually check solutions.
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2.1 – Vectors

• Scalar Quantity
• Physical quantities which have no associated direction
• Described by a positive or negative number
• Examples: Mass, time, temperature, and length

• Vector Quantity
• Physical quantities which have magnitude and a 

direction
• Examples: force, moment, and acceleration



Vector Convention

• Vector Visualization
• An arrow pointing in a particular direction
• The tip and tail of a vector define a line of action. 
• Standard notation for a vector

• The vector’s magnitude is a positive real number 
including units
• Vector directions are described with respect to 

a coordinate system



2.2 – One-Dimensional Vectors

• Resultant Vector
• Adding multiple vectors together finds the resultant 

vector
• In the tip-to-tail technique, slide vector B until its tail is 

at the tip of A and the vector from the tail of A to the tip 
of B is the resultant R.



One-Dimensional Vectors

• Vector Subtraction
• The easiest way to handle vector subtraction is to add 

the negative of the vector being subtracted to the other 
vector.
• Can still use tip-to-tail technique

• Vector Multiplication
• Multiplying or dividing a vector by a scalar changes the 

vector’s magnitude but maintains its original line of 
action.



2.3 – Two Dimensional Coordinate 
Systems
• Rectangular Components (x-y)

• Polar Coordinates



Coordinate Transformation

• Rectangular To Polar for 
Points (Given: x and y)

• Polar to Rectangular for 
Points (Given: r and Θ)

• Polar to Rectangular for 
forces (Given: 
magnitude and 
direction)



Example 2.1 (1/2)

Express point P = (−8.66, 5) in polar coordinates.



Example 2.1 (2/2) 



Example 2.2 (1/2)

Express 200 N force F as a pair of scalar 
components.



Example 2.2 (2/2)



2.4 – Three Dimensional 
Coordinate Systems
• The most commonly use method is an extension of 

two-dimensional rectangular coordinates to three-
dimensions. Alternately, points and vectors in three 
dimensions can be specified in terms of direction 
cosines, or using spherical or cylindrical coordinate 
systems. These will be discussed in the following 
sections.



2.4.1 – Rectangular Coordinates

• Extension of the two-dimensional Cartesian 
coordinate system



2.4.2 – Direction Cosine Angles

• The direction cosine angles are the angles between the 
positive x, y, and z axes to a given vector and are 
traditionally named Θx, Θy, and Θz.

• The numerator of each direction cosine equation is 
positive or negative as defined by the coordinate 
system, and the vector magnitude in the 
denominator is always positive. 
• Direction cosines are signed value between -1 and 1.
• Direction cosine angles must always be between 

0° and 180°.



2.4.3 – Spherical Coordinates

• In spherical coordinates, points are 
specified with these three coordinates
• r - the distance from the origin to the tip of 

the vector
• Θ - the angle, measured counter-clockwise 

from the positive x axis to the projection of 
the vector onto the xy plane, and

• Φ, the polar angle from the z axis to the 
vector.



2.4.4 – Cylindrical Coordinates

• Seldom used in statics
• Cylindrical coordinates extend two-dimensional polar 

coordinates by adding a z coordinate indicating the 
distance above or below the xy plane.
• Points are specified with these three cylindrical 

coordinates.
• r - the distance from the origin to the 

projection of the tip of the vector onto 
the xy plane

• Θ - the angle, measured counter-
clockwise from the positive x axis to 
the projection of the vector onto 
the xy plane

• z - the vertical height of the vector tip



2.5 – Unit Vectors

A unit vector is a vector with a magnitude of one and 
no units. 
• A unit vector represents a pure direction. 
• By convention a unit vector is indicated by a hat over a 

vector symbol. 



2.5.1 – Cartesian Unit Vectors

• A unit vector can point in any direction, but 
because they occur so frequently the unit vectors in 
each of the three Cartesian coordinate directions 
are given their own symbols, which are:
• "̂ - for the unit vector pointing in the x direction
• #̂ - for the unit vector pointing in the y direction
• $𝒌 - for the unit vector pointing in the z direction.

• The x and y components of a point on the unit 
circle are also the scalar components of F



2.5.2 – Relation between Vectors 
and Unit Vectors
When a unit vector is multiplied by a scalar value it 
is scaled by that amount
In general,

where F is the magnitude of F, and !𝑭 is the unit 
vector pointing in the direction of F.



2.5.2 – Relation between Vectors 
and Unit Vectors
To find the unit vector of known vector F



Example 2.3 (1/2)

Find the unit vector corresponding to a 100 N force 
at 60° from the x-axis.



Example 2.3 (2/2)



2.5.3 – Force Vectors from 
Position Vectors
• Unit vectors are generally the best approach when 

working with forces and distances in three 
dimensions.
• When the location of two points on the line of 

action of a force are known, the unit vector of the 
line of action can be found and used to determine 
the components of a force acting along that line.



Components of a Force 

Steps for determine the components of a force acting 
along the line given by points A and B.
1. Use the problem geometry to find AB, the 

displacement vector from point A to point B. Then 
subtract the coordinates of the starting point A 
from the coordinates of the destination point B 
to find the vector.



Components of a Force 

2. Find the direct distance between point A and 
point B using the Pythagorean Theorem. This 
distance is also the magnitude of AB

3. Find #𝐀𝐁, the unit vector from A to B, by dividing 
vector AB by its magnitude. This is a unitless
vector with a magnitude of 1 which points 
from A to B.



Components of a Force 

4. Multiply the magnitude of the force by the unit 
vector #𝐀𝐁 to get force FAB



Example 2.4 (1/3)

Determine the components of a 5 kN force F acting at 
point A, in the direction of a line from A to B.
Given: A = (2, 3, −2.1) m and B = (-2.5, 1.5, 2.2) m



Example 2.4 (2/3)

1. Find the displacement vector from A to B.

2. Find the magnitude of the displacement vector



Example 2.4 (3/3)

3. Find the unit vector pointing from A to B.

4. Find the force vector.



2.5.4 – Unit Vectors and Direction 
Cosines
• The cosine of each direction cosine angle 

collectively also computes the components of the 
unit vector

• If two of the three direction cosine angles are 
know, the third can be found using the following 
equation



2.6 – Vector Addition

• Vectors being added together are called 
the components, and the sum of the components is 
called the resultant vector.
• There are five different methods for doing vector 

addition
• Triangle Rule
• Orthogonal Components
• Graphical Addition
• Trigonometric Addition
• Algebraic Addition



2.6.1 – Triangle Rule of Vector 
Addition
• All methods of vector addition are ultimately based 

on the tip-to-tail method
• Triangle Rule.
Place the tail of one vector at the tip of the other vector, 
then draw the resultant from the first vector’s tail to the 
final vector’s tip.
• Parallelogram Rule.
Place both vectors tails at the origin, then complete a 
parallelogram with lines parallel to each vector through 
the tip of the other. The resultant is equal to the diagonal 
from the tails to the opposite corner.





2.6.2 – Orthogonal Components

• Any arbitrary vector F can broken into two 
component vectors which are the sides of a 
parallelogram having F as its diagonal.
• Rectangular Components
• Vectors are resolved into components that align with the 

x and y axes.

• Fx and Fy are the scalar components of F



2.6.3 – Graphical Vector Addition

• Graphical vector addition involves drawing a scaled 
diagram using either the parallelogram or triangle 
rule, and then measuring the magnitudes and 
directions from the diagram.
• Must carefully draw the triangle accurately to scale and 

use a protractor and ruler
• Answer will only be as precise as the diagram and ability 

to read the tools



2.6.4 – Trigonometric Vector 
Addition
• Using triangle-based geometry to solve vector 

problems is a quick and powerful tool, but includes the 
following limitations:
• There are only three sides in a triangle; thus vectors can only 

be added two at a time. If you need to add three or more 
vectors using this method, you must add the first two, then 
add the third to that sum and so on.

• If you fail to draw the correct vector triangle, or identify the 
known sides and angles you will not find the correct answer.

• The trigonometric functions are scalar functions. They are 
quick ways of solving for the magnitudes of vectors and the 
angle between vectors, but you may still need to find the 
vector components from a given datum.



2.6.5 – Algebraic Addition of 
Components
• The algebraic method uses the addition 

of scalar components.
• To find the sum of multiple vectors:

• Find the scalar components of each component vector in 
the x and y directions

• Algebraically sum the scalar components in each coordinate 
direction. 
• The scalar components will be positive if they point right or up, 

negative if they point left or down. 
• These sums are the scalar components of the resultant.

• Resolve the resultant’s components to find the 
magnitude and direction of the resultant vector



Example 2.5 (1/3)

Vector A = 200 N∠ 45° counter-clockwise from 
the x axis, and vector B = 300 N ∠70∘ counter-
clockwise from the y axis.

Find the resultant R = A + B by addition of scalar 
components.



Example 2.5 (2/3)



Example 2.5 (3/3)



2.6.5 – Algebraic Addition of 
Components
The process for adding vectors in space is exactly the 
same as in two dimensions, except that an 
additional z component is included.



2.6.6 – Vector Subtraction

• The easiest way to handle two dimensional vector 
subtraction is by taking the negative of a vector 
followed by vector addition. 
• Multiplying a vector by -1 preserves its magnitude 

but flips its direction, which has the effect of 
changing the sign of the scalar components.

• Any of the vector addition techniques described 
may be used.



2.7 – Dot Products

• For two vectors A=⟨Ax, Ay, Az⟩ and B=⟨Bx, By, Bz⟩, the 
dot product multiplication is computed by 
summing the products of the components.

or

• The dot product is a scalar value



2.7.1 – Magnitude of a Vector

• Dot products can be used to find vector 
magnitudes.



Example 2.6 (1/2)

Find the magnitude of vector F with 
components Fx=30 N, Fy = −40 N and Fz = 50 N.



Example 2.6 (2/2)



2.7.2 – Angle between Two 
Vectors
• The angle between two vectors can be found by 

rearranging the dot product equation



Example 2.7 (1/2)

Find the angle between F = ⟨100 N, 200 N, −50 N⟩
and G = ⟨-75 N, 150 N, -40 N⟩.



Example 2.7 (2/2)



2.8 – Cross Products

• The vector cross product is a mathematical 
operation applied to two vectors which produces a 
third mutually perpendicular vector as a result.
• Cross products are used in mechanics to find the 

moment of a force about a point.

• If A and B are in the xy plane



2.8.1 – Cross Product of Arbitrary 
Vectors

• The cross product of two three-dimensional vectors 
can be calculated by evaluating the determinant of 
this 3×3 matrix.



2.8.1 – Cross Product of Arbitrary 
Vectors



Example 2.8 (1/2)

Find the cross product of A = ⟨2, 4, −1⟩ and
B = ⟨10, 25, 20⟩. The components of A are in meters 
and B are in Newtons.



Example 2.8 (2/2)



Textbook
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3.1 – Equilibrium

• Engineering statics is the study of rigid bodies in 
equilibrium so it’s appropriate to begin by defining 
what we mean by rigid bodies and what we mean 
by equilibrium.
• A body is an object, possibly made up of many parts, 

which may be examined as a unit.
• A rigid body is a body which doesn't deform under load.
• A body in equilibrium is not accelerating.



3.2 – Particles

• The defining characteristic of a particle is that all 
forces that act on it are coincident or concurrent
• Forces are coincident if they have the same line of 

action.
• Forces are concurrent if they intersect at a point.

• All forces will be assumed to be concentrated.
• Concentrated forces act at a single point, have a well 

defined line of action, and can be represented with an 
arrow — in other words, they are vectors



3.3 – Particles in One Dimension

• In mechanics we are interested in studying the 
forces acting on objects



3.3.1 – A simple case

• The free-body diagram
• A diagram which focuses on the forces acting on an 

object, not the mechanisms that hold it in place

• “Principle of Transmissibility”
• A force can be moved along it’s line of action and the 

net external effects remain the same.



3.3.1 – A simple case

• Drawing free-body diagrams can be surprisingly 
tricky. 
• Must identify all the forces acting on the object and 

correctly represent them on the free-body diagram.
• If not all forces are accounted for or they are 

represented them incorrectly, the analysis will be 
incorrect.



3.3.2 – Scalar Components

• The scalar component of a vector is 
a signed number which indicates the 
vector’s magnitude and sense
• Scalar components can be added together 

algebraically, but only if they act “in the same 
direction.”



Example 3.1 (1/2)

If Fx = −40 N and Fy = 30 N, find the magnitude and 
direction of their resultant.



Example 3.1 (2/2)



3.3.3 – Two-force Bodies

• A two-force body is a body with two forces acting 
on it
• The two forces must either
• Share the same line of action, have the same magnitude, 

and point away from each other, or
• Share the same line of action, have the same magnitude, 

and point towards each other, or
• Both have zero magnitude.



3.3.3 – Two-force Bodies

• When two forces have the same magnitude but act 
in diametrically opposite directions, we say that 
they are equal-and-opposite.
• Compression - point towards each other
• Tension - point away from each other



3.4 – Particles in Two Dimensions
3.4.2 – General Procedure
The general procedure for solving equilibrium of a particle 
problems in two dimensions is to:

1. Identify the particle.
2. Establish a coordinate 

system.
3. Draw a free-body 

diagram.
4. State any given 

values and identify the 
unknown values.

5. Find trivial angles.

6. Count knowns and 
unknowns.

7. Formulate equilibrium 
equations.

8. Simplify.
9. Substitute values for 

symbols.
10. Check your work.



3.4.3 – Force Triangle Method

• Applicable to situations where there are (exactly) 
three forces acting on a particle, and no more than 
two unknown magnitudes or directions.
• If such a particle is in equilibrium then the three forces 

must add to zero.

• Graphically, force vectors are arranged tip-to-tail, 
and form a closed, three-sided polygon.



3.4.4 – Trigonometric Method

The general approach for solving particle equilibrium 
problems using the trigonometric method is to:
1. Draw and label a free-body diagram.
2. Rearrange the forces into a force triangle and 

label it.
3. Identify the knowns and unknowns.
4. Use trigonometry to find the unknown sides or 

angles of the triangle.

There must be no more than two unknowns



Example 3.2 (1/4)

A 24 kN crate is being lowered into 
the cargo hold of a ship. 
Boom AB is 20 m long and acts at a 
40° angle from kingpost AC. The 
boom is held in this position by 
topping lift BC which has a 1:4 slope.

Determine the forces in the boom 
and in the topping lift.



Example 3.2 (2/4)



Example 3.2 (3/4)



Example 3.2 (4/4)



3.4.5 – Scalar Components 
Method
• The general statement of equilibrium of forces, can 

be expressed as the sum of forces in the +̂, ,̂, and !𝒌
directions.

• This statement will only be true if all three 
coefficients of the unit vectors are themselves 
equal to zero,



Example 3.3 (1/4)

Consider the utility pole next to the road shown 
below. A top view is shown in the right hand 
diagram. If each of the six power lines pulls with a 
force of 10.0 kN, determine the magnitude of the 
tension in the guy wire.



Example 3.3 (2/4)



Example 3.3 (3/4)



Example 3.3 (4/4)



Example 3.4 (1/3)

A lawn roller which weighs 160 lb is being pulled up 
a 10° slope at a constant velocity.
Determine the required pulling force .



Example 3.4 (2/3)



Example 3.4 (3/3)



3.4.6 – Multi-Particle Equilibrium

• When two or more particles interact with each 
other there will always be common forces between 
them as a result of Newton’s Third Law, the action-
reaction principle.



Example 3.5 (1/4)

A 100 N weight W is supported by 
cable ABCD. There is a frictionless pulley at B and the 
hook is firmly attached to the cable at point C.
What is the magnitude and direction of 
force P required to hold the system in the position 
shown?



Example 3.5 (2/4)



Example 3.5 (3/4)



Example 3.5 (4/4)



3.5 – Particles in Three 
Dimensions
• To model real-world problems we will have to 

consider all three dimensions.
• All the principles learned thus far still apply
• Especially important to have good diagrams and 

keep work neat and organized.



3.5.1 – Three-Dimensional 
Coordinate Frame
• For equilibrium of a particle, usually the origin of 

the coordinate frame is at the particle, the x axis is 
horizontal, the y axis is vertical just as in a two-
dimensional situation, and the z axis is determined 
by the right hand rule.



3.5.2 – Free Body Diagrams

• Begin the analysis by drawing a free-body diagram 
which shows all forces and moment acting on the 
object of interest.



3.5.3 – Angles

• When working in three dimensions you actually 
need three angles to determine the direction of the 
vector.
• As with two dimensions, angles can be determined 

from geometry — a distance vector going in the 
same direction as the force vector.



3.5.3 – Angles

• The line of action goes through two 
points A and B, and the direction of the force is 
from A towards B.
• To determine the three angles, write the distance 

vector (rAB) from A to B.
• Starting at point A, you need to determine how to get to 

point B by moving in each of the three directions.
• When writing these scalar components pay attention to 

which direction moved along the axes.
• Determine the total distance from point A and B



3.5.3 – Angles

• The angles are determined by the direction cosines

• Since the force vector has the same line of action as 
the distance vector, by the three-dimensional 
version of similar triangles



3.5.4 – General Procedure

The general procedure for solving equilibrium of a particle (or 
concurrent force) problems in three dimensions
1. Identify the particle.
2. Establish a coordinate 

system.
3. Draw a free-body 

diagram.
4. State any given 

values and identify the 
unknown values.

5. Determine the direction 
of each of the force 
vectors

6. Count knowns and 
unknowns.

7. Formulate equilibrium 
equations.

8. Simplify.
9. Substitute values for 

symbols.
10. Check your work.



Example 3.6 (1/5)

A hot air balloon 30 ft above the ground is tethered 
by three cables as shown in the diagram. If the 
balloon is pulling upwards with a force of 900 
lb, what is the tension in each of the three cables?
The grid lines on the ground plane are 
spaced 10 ft apart.



Example 3.6 (2/5)



Example 3.6 (3/5)



Example 3.6 (4/5)



Example 3.6 (5/5)
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4.1 – Direction of a Moment

• In a two-dimensional problem the direction of a 
moment can be determined easily by inspection as 
either clockwise or counter-clockwise.
• In three-dimensions a moment vector may point in 

any direction in space and is more difficult to 
visualize. The direction is established by the right 
hand rule.



4.2 – Magnitude of a Moment

• The turning effect produced by a wrench depends 
on where and how much force applied to the 
wrench, and the optimum direction to apply the 
force is at right angles to the wrench’s handle.



4.2.1 – Definition of a Moment

• The magnitude of a moment is found by 
multiplying the magnitude of force F times 
the moment arm
• The moment arm is defined as the perpendicular 

distance, d⊥, from the center of rotation to the line of 
action of the force



4.3 – Scalar Components

• Vectors can be expressed as the product of a scalar 
component and a unit vector.
• Moments in two dimensions are either clockwise or 

counter-clockwise.
• Counter-clockwise moments are positive
• Clockwise moments are negative

• In three dimensions, moments, like forces, can be 
resolved into components in the x, y, and 
z directions.



4.4 – Varignon’s Theorem

• Varignon’s Theorem is a method to calculate 
moments
• It states that sum of the moments of several concurrent 

forces about a point is equal to the moment of the 
resultant of those forces, or alternately, the moment of 
a force about a point equals the sum of the moments of 
its components.

• The moment of a force can be calculated by first 
breaking it into components, evaluating the scalar 
moments of the individual components, and finally 
summing them to find the net moment about the 
point



4.4.1 – Rectangular Components

• The moment of a force is the sum of the moments 
of the components

• A positive moment rotates the object counter-
clockwise and a negative moment tend to rotate it 
clockwise



Example 4.1 (1/2)

A 750 lb force is applied to the frame as shown. 
Determine the moment this force makes about 
point A.



Example 4.1 (2/2)



4.5 – Moments in Three Dimensions

• Moments are vectors and they will typically have 
components in the x, y, and z directions in three-
dimensional situations
• The vector cross product will be used to calculate 

the moment in three dimensions



4.5.1 – Moment Cross Products

• The general method to find the moment of a force 
is to use the vector cross product

• F is the force creating the moment in vector form
• r is a position vector from the moment center to the line 

of action of the force



4.5.1 – Moment Cross Products

• The magnitude of the resultant moment can be 
calculated using the three-dimensional 
Pythagorean Theorem



4.5.1 – Moment Cross Products

• Important notes when calculating the moment 
using the cross product
• The order must always be r x F, never F x r.
• The moment arm r must always be measured from 

moment center to the line of action of the force.
• The signs of the components of r and F must follow 

those of a right-hand coordinate system.



4.6 – Couples

• A couple consists of two parallel forces, equal in 
magnitude, opposite in direction, and non-
coincident.
• Couples are special because the pair of forces 

always cancel each other, which means that a 
couple produces a rotational effect but never 
translation.
• “Pure Moment”



4.6 – Couples

• When adding moments to find the total or 
resultant moment, you must include couple-
moments as well the r × F moments.



4.8 Statically Equivalent Systems

• A loading system is a combination of load forces 
and moments which act on an object.
• Any loading system may be replaced with a 

simpler statically equivalent system consisting of 
one resultant force at a specific point and 
one resultant moment



4.8 – Statically Equivalent Systems

• The resultant force acting on a system, R, can be 
found from adding the individual forces, Fi

• The resultant moment, MO, about a point O, can be 
found from adding all of the moments M, about 
that point, including both r × F moments and 
concentrated moments.



4.8 – Statically Equivalent Systems

• Force-Couple Systems
• One transformation includes moving a force to another 

location. While sliding a force along its line of action is 
fine, moving a force to another point changes its line of 
action and thus its rotational effect on the object, so 
moving a force to a new line of action is not an 
equivalent transformation.
• You can move a force to a new line of action in an 

equivalent fashion if you add a “compensatory couple” 
to undo the effect of changing the line of action.



4.8 – Statically Equivalent Systems

Force-Couple System General 
Procedure
a. Draw the original system
b. Add two equal and opposite 

forces to desired location
c. Recognize couple formed
d. Replace couple with an 

equivalent couple-moment



Example 4.2 (1/2)

Replace the system of forces in diagram (a) with an 
equivalent force-couple system at A.
Replace the force-couple system at A with a single 
equivalent force and specify its location.



Example 4.2 (2/2)



4.8 – Statically Equivalent Systems

There are four common special cases which are 
worth highlighting individually.
• Concurrent forces
• Parallel forces
• Coplanar forces
• Wrench resultant



4.8 – Statically Equivalent Systems

Concurrent forces
When all forces in a system are concurrent, the 
resultant moment about that their common 
intersection point will always be zero. We then need 
only find the resultant force and place it at the point 
of intersection. The resultant moment about any 
other point is the moment of the resultant force R 
about that point.



4.8 – Statically Equivalent Systems

Parallel forces
When all forces in a system are parallel, the resultant 
force will act in this direction with a magnitude equal 
to the sum of the individual magnitudes. There will 
be no moment created about this axis, but we need 
to find the resultant moment about the other two 
rectangular axes. That is, if all forces act in the x
direction, we need only find the resultant force in the 
x direction and the resultant moment about the y 
and z axes



4.8 – Statically Equivalent Systems

Coplanar forces
When all forces in a system are coplanar we need 
only find the resultant force in this plane and the 
resultant moment about the axis perpendicular to 
this plane. That is, if all forces exist in the x-y plane, 
we need only to sum components in the x and y
directions to find resultant force R, and use these to 
determine the resultant moment about the z axis. All 
two-dimensional problems fall into this category.



4.8 – Statically Equivalent Systems

Wrench resultant
A wrench resultant is a special case where the 
resultant moment acts around the axis of the 
resultant force. The directions of the resultant force 
vector and the resultant moment vector are the 
same.
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5.1 – Degree of Freedom

• Degrees of freedom refers to the number of 
independent parameters or values required to 
specify the state of an object.
• Two-dimensional rigid bodies in the xy plane have three 

degrees of freedom.
• Three-dimensional rigid bodies have six degrees of 

freedom

• For a body to be in static equilibrium, all possible 
movements of the body need to be adequately 
restrained.



5.2 – Free Body Diagrams

• Free body diagrams are used to identify the forces 
and moments that influence an object.
• Drawing a correct free-body diagram is the first and 

most important step in the process of solving an 
equilibrium problem.
• A good free-body diagram is neat and clearly drawn and 

contains all the information necessary to solve the 
equilibrium.



5.2 – Free Body Diagrams

Every equilibrium problem begins by drawing and 
labeling a free-body diagram!
The basic steps to creating a FBD
1. Select and isolate an object.
2. Select a reference frame.
3. Identify all loads.
4. Identify all reactions.
5. Label the diagram.



5.2 – Free Body Diagrams

Two-dimensional Reactions 



5.2 – Free Body Diagrams



5.2 – Free Body Diagrams

Three-dimensional Reactions 



5.2 – Free Body Diagrams



5.3 – Equations of Equilibrium

• The focus in statics is on systems where both linear 
acceleration a and angular acceleration α are zero. 
These systems are frequently stationary, but could 
be moving with constant velocity.
• Newton’s Second Law



5.3 – Equations of Equilibrium

• The scalar equations become



5.4 – 2D Rigid Body Equilibrium

• Two-dimensional rigid bodies have three degrees of 
freedom, so they only require three independent 
equilibrium equations to solve.



Example 5.1 (1/4)

The L-shaped body is supported by a roller at B and a 
frictionless pin at A. The body supports a 250 lb
vertical force at C and a 500 ft⋅lb couple-moment 
at D. Determine the reactions at A and B.



Example 5.1 (2/4)



Example 5.1 (3/4)



Example 5.1 (4/4)



5.5 – 3D Rigid Body Equilibrium

• Three-dimensional systems are closer to reality 
than two-dimensional systems and the basic 
principles to solving both are the same.
• Three-dimensional problems are usually solved 

using vector algebra rather than the scalar 
approach.



5.5 – 3D Rigid Body Equilibrium

Resolving Forces and Moments into Components
• Three-dimensional forces will need to be broken 

into components
• When summing moments, make sure to consider 

both the r × F moments and the couple-moments



Example 5.2 (1/4)

The bent bar shown is held in a horizontal plane by a 
fixed connection at C while cable AB exerts 
a 500 lb force on point A.
Given A = (4,4,5) B = (6,0,4) and C = (0, 4, 0).
Find the reaction force F and concentrated 
moment M required to hold the bar in this position 
under this condition.



Example 5.2 (2/4)



Example 5.2 (3/4)



Example 5.2 (4/4)



5.6 – Stability and Determinacy

• Determinate vs. Indeterminate. A static system 
is determinate if it is possible to find the unknown 
reactions using the methods of statics, that is, by 
using equilibrium equations, otherwise it 
is indeterminate.
• Stable vs. Unstable. When there are sufficient 

supports to restrain a body from moving, we say 
that the body is stable. A stable body is prevented 
from translating and rotating in all directions. A 
body which can move is unstable even if it is not 
currently moving.



5.6 – Stability and Determinacy

Rules to Validate a Stable and Determinate System.
1. Rule 1: Are there exactly three reaction components 

on a two-dimensional body?
If YES, the system is determinate.
If NO, the system is indeterminate or not stable

2. Rule 2: Are all the reaction force components parallel 
to one another?

If YES, the system is unstable for translation.
If NO, the system is stable for translation.

3. Rule 3: Do the lines of action of the reaction forces 
intersect at a single point?
If YES, the system is unstable for rotation about the single intersection 
point.
If NO, the system is stable for rotation.
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6.1 – Structures

Structures fall into three broad categories: trusses, 
frames, and machines.
• Truss: a multi-body structure made up of long slender 

members connected at their ends in triangular 
subunits. Truss members carry axial forces only.
• Frame: a multi-part, rigid, stationary structure primarily 

designed to support some type of load. A frame 
contains at least one multi-force member.
• Machine: very similar to a frame, except that it includes 

some moving parts. The purpose of a machine is 
usually to provide a mechanical advantage and multiply 
forces.



6.1 – Structures

Two-force Members
• Many structures contain at least one two-force 

member, and trusses consist of two-force members 
exclusively.
• Identifying two-force members is helpful when 

solving structures because they automatically 
establish the line of action of the two forces.
• The common way to express the force of a two-

force member is with a magnitude and a sense, 
where the sense is either tension or compression.



6.2 – Interactions between 
members
• Newton’s 3rd Law, “For every action, there is an 

equal and opposite reaction.”



6.2.1 – Load Paths

• Load paths show how applied forces pass through 
the interconnected members of the structure until 
they end up at the fixed support reactions.



6.3 – Trusses

• A truss is a rigid engineering structure made up of 
long, slender members connected at their ends.
• Simple trusses are made of all two-force members 

and all joints are modeled as frictionless pins. 
• All applied and reaction forces of a simple truss are 

applied only to these joints.



6.3.3 – Solving Trusses

• “Solving” a truss means identifying and 
determining the unknown forces carried by the 
members of the truss when supporting the 
assumed load.
• There are two strategies to solve trusses:
• Method of Joints
• Method of Sections



6.3.4 Zero-Force Members

• Zero-force members carry no force and thus 
support no load.
• zero-force members can be identified by 

inspection:
• Rule 1: If two non-collinear members meet at an 

unloaded joint, then both are zero-force members.
• Rule 2: If three forces (interaction, reaction, or applied 

forces) meet at a joint and two are collinear, then the 
third is a zero-force member.



6.3.4 – Zero-Force Members

Vertically, forces BC and BA must be equal, and horizontally, 
force BD must be zero to satisfy ΣFx=0. We learn that member BD is 
a zero-force member.



6.3.4 – Zero-Force Members

Finding zero-force members is an iterative process. 

Therefore, force DA must be zero, and we 
can conclude that member DA is a zero-
force member as well.



6.4 – Method of Joints

• The method of joints is a process used to solve for 
the unknown forces acting on members of a truss.
• The method centers on the joints or connection 

points between the members.



6.4.1 – Procedure (MOJ)

1. Determine if the structure is a truss and if it is determinate. 

2. Identify and remove all zero-force members. 

3. Determine if you need to find the external reactions. 
a. A solvable joint includes one or more known forces and no more 

than two unknown forces
4. Identify a solvable joint and solve it using the methods of Chapter 3. 

When drawing free-body diagrams of joints you should
a. Represent the joint as a dot.
b. Draw all known forces in their known directions with arrowheads 

indicating their sense. Known forces are the given loads, and 
forces determined from previously solved joints.

c. Assume the sense of unknown forces. A common practice is to 
assume that all unknown forces are in tension, i.e. pulling away 
from the free-body diagram of the pin, and label them based on 
the member they represent .



6.4.1 – Procedure (MOJ)

5. Finally, write out and solve the force equilibrium equations for the 
joint

6. Once the unknown forces acting on a joint are determined, carry 
these values to the adjacent joints and repeat step four until all the 
joints have been solved. 

7. If you solved for the reactions in step two, you will have more 
equations available than unknown forces when you reach the last 
joint. The extra equations can be used to check your work.



6.5 – Method of Sections

• The method of sections is used to solve for the 
unknown forces within specific members of a truss 
without solving for them all.
• The method involves dividing the truss into 

sections by cutting through the selected members 
and analyzing the section as a rigid body.



6.5.1 – Procedure (MOS)

1. Determine if a truss can be modeled as a simple 
truss.

2. Identify and eliminate all zero-force members. 
3. Solve for the external reactions, if necessary. 
4. Use your imaginary chain saw to cut the truss into 

two pieces by cutting through some or all of the 
members you are interested in. The cut does not 
need to be a straight line.
a. Every cut member exposes an unknown internal force, so if 

you cut three members you’ll expose three unknowns. 
Exposing more than three members is not advised because 
you create more unknowns than available equilibrium 
equations.



6.5.1 – Procedure (MOS)

5. Select the easier of the two halves of the truss and draw 
its free-body diagram.
a. Include all applied and reaction forces acting on the section, and 

show known forces acting in their known directions.
b. Draw unknown forces in assumed directions and label them. A 

common practice is to assume that all unknown forces are in 
tension and label them based on the endpoints of the member 
they represent.

6. Write out and solve the equilibrium equations for your 
chosen section. If you assumed that unknown forces were 
tensile, negative answers indicate compression.

7. If you have not found all the required forces with one 
section cut, repeat the process using another imaginary 
cut or proceed with the method of joints if it is more 
convenient.



6.6 – Frames and Machines

Frame and machines are engineering structures that 
contain at least one multi-force member.
• Frames are rigid, stationary structures designed to 

support loads and must include at least one multi-
force member.
• Machines are non-rigid structures where the parts 

can move relative to one another. Generally they 
have an input and an output force and are designed 
produce a mechanical advantage.



6.6.1 – Analyzing Frames and 
Machines
Analyzing a frame or machine means determining all 
applied, reaction, and internal forces and couples 
acting on the structure and all of its parts.
• Multi-part structures are analyzed by mentally 

taking them apart and analyzing the entire 
structure and each part separately. Each 
component is analyzed as an separate rigid body



6.6.1 – Analyzing Frames and 
Machines
Procedure
1. Determine if the entire structure is independently 

rigid. 
2. Draw a free-body diagram for each of the 

members in the structure.
a. Applied forces and couples and the weights of the 

components if non-negligible.
b. Interaction forces due to two-force members. 
c. All reaction forces and moments at the connection 

points between members. 



6.6.1 – Analyzing Frames and 
Machines
All interaction forces and moments between 
connected bodies must be shown as equal-and-
opposite action-reaction pairs.



6.6.1 – Analyzing Frames and 
Machines
5. Write out the equilibrium equations for each 

free-body diagram.
6. Solve the equilibrium equations for the 

unknowns. You can do this algebraically, solving 
for one variable at a time, or you can use matrix 
equations to solve for everything at once. 
Negative magnitudes indicate that the assumed 
direction of that term was incorrect, and the 
actual force/moment is opposite the assumed 
direction.



6.6.1 – Analyzing Frames and 
Machines
Free-body diagram of structures
The toggle clamp shown is used to quickly secure 
wooden furniture parts to the bedplate of a CNC 
router in order to cut mortise and tenon joints. The 
machine will be used to show how to create a FBD.



6.6.1 – Analyzing Frames and 
Machines
Exclude the floor



6.6.1 – Analyzing Frames and 
Machines
Exclude the wall



6.6.1 – Analyzing Frames and 
Machines
Exclude the bearing at A



6.6.1 – Analyzing Frames and 
Machines
Examine the wooden block



6.6.1 – Analyzing Frames and 
Machines
Exclude the wooden block



6.6.1 – Analyzing Frames and 
Machines
Examine the short link BD
BD is a two-force member.



6.6.1 – Analyzing Frames and 
Machines
Examine the roller at D



6.6.1 – Analyzing Frames and 
Machines
Exclude the roller



6.6.1 – Analyzing Frames and 
Machines
Exclude the short link



Example 6.1 (1/3)

Knowing that angle Θ = 60°, find the vertical 
clamping force acting on the piece at D and the 
magnitude of the force exerted on member ABC at 
pin B in terms of force F applied to the clamp arm 
at C.



Example 6.1 (2/3)



Example 6.1 (3/3)



6.7 – Summary

Particle Equilibrium.
An object may be treated as a particle when the 
forces acting on it are coincident, that is, all of their 
lines of action intersect at a common point. In this 
case, they produce no moment to rotate the object, 
and ΣM=0 is not helpful. The applicable equation is

ΣF=0
which produces two scalar equations in two 
dimensions and three scalar equations in three 
dimensions.



6.7 – Summary

Rigid Body Equilibrium.
A rigid body can rotate and translate so both force 
and moment equilibrium must be considered.

ΣF=0 ΣM=0
In two dimensions, these equations produce in two 
scalar force equations and one scalar moment 
equation. Up to three unknowns can be determined.
In three dimension, they produce three scalar force 
equations and scalar three moment equations. Up to 
six unknowns can be determined.



6.7 – Summary

Trusses.
A truss is a structure which consists entirely of two-
force members and only carries forces at the joints 
connecting members. Two-force members and 
loading at joints allows free-body diagram of the 
joints to expose the axial loads in members.
In addition to the equations provided by treating the 
entire truss as a rigid body, each joint provides two 
additional equations for two-dimensional trusses, 
and three for non-planar trusses.



6.7 – Summary

Frames and Machines.
Frames and machines are structures which contain multiple rigid body 
systems. Frames don't move and are designed to support loads. Machines 
are generally designed to multiply forces, and usually have moving parts. 
Both frames and machines can be solved using the same methods.
All interactions between bodies are equal and opposite action-reaction 
pairs.
When solving frames and machines:

Two-force members provide one useful equilibrium equation, and can 
determine one unknown.
In two dimensions, rigid bodies result in two scalar force equations 
and one scalar moment equation. Up to three unknowns can be 
determined.
In three dimensions, rigid bodies produce three scalar force equations 
and scalar three moment equations. Up to six unknowns can be 
determined.
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7.1 – Weighted Averages

In situations where some values are more important 
than others, we use a weighted average.
In general terms a weighted average is

Where ai are the values we are averaging and wi are 
the corresponding weighting factors.



Example 7.1 (1/3)

The mechanics syllabus says that there are two 
exams worth 25% each, homework is 10%, and the 
final is worth 40%. You have a 40 on the first exam, a 
80 on the second exam, and your homework grade is 
90.
What do you have to earn on the final exam to get a 
70 in the class?



Example 7.1 (2/3)



7.2 – Center of Gravity

The center of gravity is the point where all of an 
object’s weight may be concentrated and still have 
the same external effect on the body.
The center of gravity of a body is fixed with respect 
to the body, but the coordinates depend on the 
choice of coordinate system.



7.2 – Center of Gravity

Let’s look at the center of gravity for a pencil
Assume that the two halves of the pencil have 
known weights acting at points 1 and 2. 
To be equivalent, the total weight must equal the 
total weight of the parts. W=W1+W2. Common sense 
also tells us that W will act somewhere between W1 
and W2.



7.2 – Center of Gravity

• Pick the tip of the pencil to be point O and calculate the 
total moment about point O due to the two weights.

• Need a single equivalent force acting at the (unknown) 
center of gravity. Call the distance from the origin to the 
center of gravity �̅�.
• �̅� represents the mean distance of the weight, mass, or 

area depending on the context of the problem. We are 
evaluating weights in this problem, so �̅� represents the 
distance from O to the center of gravity.
• The sum of moments around point O for the equivalent 

system can be written as:



7.2 – Center of Gravity

• Set the two equations equal to each other

• Location of the centroid is 



7.2 – Center of Gravity

• There are similar formula for the other dimensions 
as well



7.4 – Centroids

• A centroid is a weighted average like the center of 
gravity, but weighted with a geometric property like 
area or volume, and not a physical property like 
weight or mass.
• A centroid is a weighted average like the center of 

gravity, but weighted with a geometric property like 
area or volume, and not a physical property like 
weight or mass.



7.4.1 – Properties of Common 
Shapes



7.5.1 – Composite Parts Method

The steps to finding a centroid using the composite 
parts method are:
1. Break the overall shape into simpler parts.
2. Collect the areas and centroid coordinates, and
3. Combine the pieces to find the overall centroid.



7.5.1 – Composite Parts Method

1. Break the overall shape into simpler parts.

• Begin with a sketch of the shape and establish a 
coordinate system.
• Divide the shape into several simpler shapes.



7.5.1 – Composite Parts Method

2. Collect the areas and centroid coordinates.

• Once the complex shape has been divided into 
parts, determine the area and centroidal
coordinates for each part.
• Record the information in a table.



7.5.1 – Composite Parts Method

3. Combine the pieces to find the overall centroid.

• After completing the table, calculate the 
coordinates of the centroid.



7.5.2 – Centroids of 3D objects

• The centroid of a three-dimensional volume is 
found similarly to two-dimensional centroids, but 
with volume used instead of area for the weighting 
factor.



Example 7.2 (1/2)

A composite solid consists of a 
rectangular block of lightweight 
concrete and a triangular wedge of steel 
with dimensions as shown. The 
rectangular block has a 2 ft radius 
circular hole, centered and drilled 
through its full depth, perpendicular to 
the front and back faces.

Assume 𝛾𝑐=125 lb/ft³, and 𝛾𝑠 =493 lb/ft³
Find the center of mass of this 
composite solid.



Example 7.2 (2/2)



7.6 – Average Value of a Function

• To find the average of an infinite number of values or values 
which change continuously, use a definite integral

• In other words, to transform a discrete summation to an 
equivalent continuous integral form you:

• Replace the summation with integration, .Σ⇒∫.
• Replace the discrete weighting factor with the corresponding 

differential element,
• Rename the value being averaged to eliminate the index i. We often 

use el as a subscript when referring to a differential element.



7.7 – Centroids using Integration

• Integrals can be used to find the centroids of non-
homogenous objects or shapes with curved 
boundaries.



7.7.1 – Integration Process

• Determining the centroid of a area using integration 
involves finding weighted average values �̅� and (𝑦, by 
evaluating the three integrals

• where
• dA is a differential bit of area called the element.
• A is the total area enclosed by the shape, and is found by 

evaluating the first integral.
• �̅� and (𝑦 are the coordinates of the centroid of the element. 

These are frequently functions of x or y, not constant values.
• Qx and Qy are the First moments of Area with respect to 

the x and y axis.



7.7.1 – Integration Process

Procedure for finding the centroid using integrals
1. Set up the integrals.

Draw a sketch
Choose and element of area dA



7.7.1 – Integration Process

The two most common choices for differential 
elements are:

Square elements and double integrals.
Rectangular elements and single integrals.



7.7.1 – Integration Process

2. Solve the integrals
Be neat, work carefully, and check your work 

as you go along. Use proper mathematics 
notation

3. Evaluate the centroid.
Solve for (x and (y
Plot the centroid and determine if the location make 
sense



Example 7.3 (1/6)

Find the coordinates of the centroid of a parabolic 
spandrel bounded by the y axis, a horizontal line 
passing through the point (a, b), and a parabola with 
a vertex at the origin and passing through the same 
point. a and b are positive integers.



Example 7.3 (2/6)



Example 7.3 (3/6)



Example 7.3 (4/6)



Example 7.3 (5/6)



Example 7.3 (6/6)



Example 7.4 (1/4)

Use integration to locate the centroid of the area 
bounded by



Example 7.4 (2/4)



Example 7.4 (3/4)



Example 7.4 (4/4)



7.8 – Distributed Loads

• Distributed loads are forces which are spread out over 
a length, area, or volume.
• Distributed load is a force per unit length or force per 

unit area.
• Computational tools discussed in the previous chapters 

can be used to handle distributed loads if first 
converted to equivalent point force.
• To be equivalent, the point force must have a:
• Magnitude equal to the area or volume under the distributed 

load function.
• Line of action that passes through the centroid of the 

distributed load distribution.



7.8.1 – Equivalent Magnitude

• The magnitude of the distributed load is equal to 
the value of the distributed load times the length it 
acts over.

• This total load is simply the area under the 
curve w(x), and has units of force. If the loading 
function is not uniform, integration may be 
necessary to find the area.



7.8.2 – Equivalent Location

• The line of action of the equivalent force acts 
through the centroid of area under the load 
intensity curve.
• For a rectangular loading, the centroid is in the center.
• For a triangular distributed load — also called 

a uniformly varying load — the magnitude of the 
equivalent force is the area of the triangle, bℎ/2 and the 
line of action passes through the centroid of the 
triangle.



7.8.3 – Distributed Load 
Applications
• Once the distributed loads are converted to the 

resultant point force, the problem can be solved 
like a general equilibrium problem.



Example 7.5 (1/2)

Find the reactions at the supports for the beam 
shown.



Example 7.5 (2/2)



7.9 – Fluid Statics

Pressure is the term used for a force distributed over 
an area

Pressure can be measured in two different ways
• Absolute pressure
• Gage pressure



7.9.1 – Principles of Fluid Statics

• A fluid, like water or air, exerts a pressure on its 
surroundings. This pressure applies a distributed 
load on surfaces surrounding the fluid.
• At the surface, the gage pressure is zero. 
• The fluid pressure P increases with depth according 

to the equation



• Fluid pressure increases linearly with depth. It 
behaves as a distributed load which increases 
linearly from 0 at the surface to ρgℎ at 
depth ℎ, acting normal to the surface.



Example 7.6 (1/3)

An aquarium tank has a 3 m × 1.5 m window AB for 
viewing the inhabitants. The tank contains water 
with density ρ=1000 kg/m³.
Find the force of the water on the window, and the 
location of the equivalent point load.



Example 7.6 (2/3)



Example 7.6 (3/3)



Example 7.7 (1/3)

A gate at the end of a freshwater channel is 
fabricated from three 125 kg, 0.6 m × 1 m rectangular 
steel plates. The gate is hinged at A and rests against 
a frictionless support at D. The depth of the 
water d=0.75 m.
Draw the free-body diagram and determine the 
reactions at A and D.



Example 7.7 (2/3)



Example 7.7 (3/3)
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8.1 – Internal Forces

• One of the fundamental assumptions we make in 
statics is that bodies are rigid, that is, they do not 
deform, bend, or change shape.
• Internal forces are present at every point within a 

rigid body, but they always occur in equal-and-
opposite pairs which cancel each other out.
• Two internal forces found in two-dimensional 

systems, the internal shear and internal bending 
moment will be examined.



8.1 – Internal Forces

• Internal forces of a two-force member



8.1 – Internal Forces

• Internal bending moment

• Internal normal force



8.2 – Sign Conventions

• Standard sign convention used for shear force, 
normal force, and bending moment 

• This new sign convention applies to internal forces, 
it doesn’t change the sign convention for the 
equations of equilibrium at all.



8.3 – Internal Forces at a Point

• To find the internal forces at a point, imagine 
making a cut at that point.



Example 8.1 (1/4)

Consider a cantilever beam which is supported by a 
fixed connection at A, and loaded by a vertical force 
P and horizontal force F at the free end B. 
Determine the internal forces at a point a distance a 
from the left end. 



Example 8.1 (2/4)



Example 8.1 (3/4)



Example 8.1 (4/4)



8.3 – Internal Forces at a Point

• General Procedure
• Establishing a horizontal x and vertical y coordinate system.
• Taking a cut at the point of interest.
• Assuming that the internal forces act in the positive direction 

and drawing a free-body diagram accordingly
• Using ΣFx = 0, ΣFy = 0, and ΣMz = 0 to solve for the three 

unknown internal forces. 
• The shear force V, normal force N, and bending 

moment M are scalar components and they may be 
positive, zero, or negative depending on the 
applied The signs of the scalar components 
together with the sign convention for internal 
forces establish the actual directions of the shear 
force, normal force and bending moment vectors. 



Example 8.2 (1/6)

A beam of length L is supported by a pin at A and a 
roller at B and is subjected to a horizontal force F
applied to point B and a uniformly distributed load 
over its entire length. The intensity of the distributed 
load is w with units of [force/length]. 
Find the internal forces at the midpoint of the beam.



Example 8.2 (2/6)



Example 8.2 (3/6)



Example 8.2 (4/6)



Example 8.2 (5/6)



Example 8.2 (6/6)



8.4 – Shear and Bending Moment 
Diagrams
Beams are structural elements primarily designed to 
support vertical loads.
• Locating the points of maximum shear and maximum 

moment and their magnitudes during beam design is 
important because that’s where the beam is most likely 
to fail.



8.4.1 – Shear and Bending 
Moment Diagrams
• Shear and moment diagrams are graphs which 

show the internal shear and bending moment 
plotted along the length of the beam.
• Beams can be supported in a variety of ways as 

shown. The common support methods are



8.5 – Section Cut Method

• To draw a shear and bending moment diagram, the 
procedure is similar except that the cut is taken at a 
variable position designated by x instead of at a 
specified point.
• The analysis produces equations for shear and 

bending moments as functions of x.



8.5 – Section Cut Method

• Consider a cantilevered beam fixed to a wall on its 
left end and subject to a vertical force P on its right 
end as an example. 
• Global equilibrium requires that the reactions at 

the fixed support at A are a vertical force Ay = P, 
and a counterclockwise moment MA = P L.



8.5 – Section Cut Method

• Cut at a distance x from the left and draw two free-
body diagrams with lengths x and (L − x).



8.5 – Section Cut Method

• To find the shear and bending moment functions, 
we apply the equilibrium to one of the free-body 
diagrams.



8.5 – Section Cut Method

• Plot the equations for V(x) and M(x)



8.5 – Section Cut Method

• Beams with multiple loads must be divided into 
loading segments between the points where loads 
are applied or where distributed loads begin or 
end.
• Consider the simply supported beam AD with a 

uniformly distributed load w over the first segment 
from A to B, and two vertical loads B and C.



8.5 – Section Cut Method

• This beam has three loading segments so you must 
draw three free-body diagrams and analyze each 
segment independently.

• After the equilibrium equations are applied to each 
segment, the resulting equations V(x) and M(x) from 
each segment are joined to plot the shear and moment 
diagrams.



8.6 – Relation Between Loading, 
Shear and Moment
• Suppose that we have a simply supported beam 

upon which there is an applied load w(x) which is 
distributed on the beam by some function of 
position, x.



8.6 – Relation Between Loading, 
Shear and Moment
• FBD for a small section of this beam from x to x + 

∆x.

• Since ∆x is infinitely narrow, we can assume that 
the distributed load over this small distance is 
constant and equal to the value at x, and call it w.



8.6 – Relation Between Loading, 
Shear and Moment
• Apply equilibrium equations

• Taking the limit of both sides as ∆x approaches 0 and 
then integrating

• Over a given distance, the change in the shear V
between two points is the area under the loading curve 
between them.



8.6 – Relation Between Loading, 
Shear and Moment
• Similarly, for the internal bending moment

• Over a given segment, the change in the moment 
value is the area under the shear curve.



8.6 – Relation Between Loading, 
Shear and Moment
Shear and bending moment diagram problems should include: 
1. A neat, accurate, labeled free-body diagram of the entire 

structure, and the work to find the reactions. 
2. A neat, properly scaled diagram of the beam showing its 

reactions and “true” loads. Distributed loads must be shown 
this diagram, because their distributed nature is significant. 

3. A large graph of the shear and bending moment functions 
drawn directly below the scaled beam diagram. 

4. The correct shape and curvature for each curve segment: zero, 
constant slope, polynomial. Changes in curve shapes should 
align with the load which causes them. Indicate the scale used 
for shear and moment, and use a straightedge. 

5. Values of shear and moment at maximums, minimums and 
points of inflection.

6. Any other work need to justify your results.



8.7 – Graphical Method

Draw shear and bending moments efficiently and 
accurately using this procedure 
1. First, determine the reaction forces and moments by 

drawing a free-body diagram of the entire beam and 
applying the equilibrium equations. 

2. Establish the shear graph with a horizontal axis below 
the beam and a vertical axis to represent shear. 
Positive shears will be plotted above the x axis and 
negative below. 

3. Make vertical lines at all the “interesting points”, i.e. 
points where concentrated forces or moments act on 
the beam and at the beginning and end of any 
distributed loads. 



8.7 – Graphical Method

4. Draw the shear diagram by starting with a dot at x = 0, V = 0 
then proceeding from left to right until you reach the end 
of the beam. Choose and label a scale which keeps the 
diagram a reasonable size.
a. Whenever you encounter a concentrated force, jump up or down 

by that value 
b. Whenever you encounter a concentrated moment, do not jump. 
c. Whenever you encounter a distributed load, move up or down by 

the “area” under the loading curve over the length of the segment. 
The “area” is actually a force. 

d. Distributed loads cause the shear diagram to have a slope equal to 
value of the distributed load at that point. For unloaded segments 
of the beam, the slope is zero, i.e. the shear curve is horizontal. For 
segments with uniformly distributed load, the slope is constant. 
Downward loads cause downward slopes. 

e. The shear diagram should start and end at V = 0. If it doesn’t, 
recheck your work.



8.7 – Graphical Method

5. Add another interesting point wherever the shear 
diagram crosses the x axis, and determine the x
position of the zero crossing. 

6. After you have completed the shear diagram, 
calculate the area under the shear curve for each 
segment. Areas above the axis are positive, areas 
below the axis are negative. The areas represent 
moments and the sum of the areas plus the values of 
any concentrated moments should add to zero. If 
they don’t, then recheck work. 

7. Establish the moment graph with a horizontal axis 
below the shear diagram and a vertical axis to 
represent moment. Positive moments will be plotted 
above the x axis and negative below.



8.7 – Graphical Method

8. Draw and label dots on the moment diagram by starting 
with a dot at x = 0, M = 0 then proceed from left to right 
placing dots until you reach the end of the beam. As you 
move over each segment move up or down from the 
current value by the “area” under the shear curve for that 
segment and place a dot on the graph. 
a. Positive areas cause the moment to increase, negative areas cause 

it to decrease. 
b. If you encounter a concentrated moment, jump straight up or 

down by the amount of the moment and place a dot. Clockwise 
moments cause upward jumps and counter-clockwise moments 
cause downward jumps. 

c. When you reach the end of the beam you should return to M = 0. 
If you don’t, then recheck your work.

9. Connect the dots with correctly shaped lines. Segments 
under constant shear are straight lines, segments under 
changing shear are curves. 



8.8 – Integration Method

There are times that the graphical technique falls 
short when the areas are more complicated than 
rectangles or triangles.



8.8.1 – Determining Loading 
Functions
When determining equations for loading segments, 
you may choose either global equations, where all 
segments use the same origin, usually at the left end 
of the beam, or local equations, where each segment 
uses its own origin, usually at the left end of the 
segment.



8.8.1 – Determining Loading 
Functions
When determining equations for the loading 
segments from the load diagram, consider the 
following. 
• No load. 
• Point Load. 
• Uniformly Distributed Load. 
• Uniformly Varying Load. 
• Arbitrary Load.



8.8.1 – Determining Loading 
Functions
No load.
Whenever there is no load at all on a segment there 
will be no change in the shear on the segment. On 
such sections the loading function is w(x) = 0 . Note 
that this can only occur when the weight of the 
beam itself is neglected.  
Point Load. 
A point load is a concentrated force acting at a single 
point which causes a jump in the shear diagram.



8.8.1 – Determining Loading 
Functions
Uniformly Distributed Load. 
A uniformly distributed load is constant over the 
segment and results in a linear slope, either a triangle 
or a trapezoid, on the shear diagram. The loading 
function on such sections is w(x) = C; V(x) = Cx + b . 
The constant value is negative if the load points 
down, and positive if it points upward.



8.8.1 – Determining Loading 
Functions
Uniformly Varying Load. 
In this case the loading function is a straight, sloping 
lie forming a triangle or trapezoidal shape. The 
resulting shear function is parabolic. The general 
form of these functions are w(x) = mx + 0;
V(x) = mx² + bx + c . The slope m, intercept b, and 
constant c must be determined from the situation, 
and will depend on whether you are writing a global 
or local equation.



8.8.1 – Determining Loading 
Functions
Arbitrary Load.
The loading function will be a given function of x. w(x) = 
f(x) , and the shear and moment functions are found by 
integration. 
V(x) = Z f(x)dx 
M(x) = Z V (x)dx 
Most gravitational distributed loads are drawn with the 
arrows pointing down and resting on the beam. If you 
slide these along their line of action so that their tails are 
on the beam, the tips define the loading equation.



Example 8.3 (1/2)

Use the integration method to find the equations for 
shear and moment as a function of x, for a simply 
supported beam carrying a uniformly distributed 
load w over its entire length L.



Example 8.3 (2/2)

This beam has only one load section, and on that 
section the load is constant so, w(x) = −w . The initial 
conditions there are V(0) = wL/2, and M(0) = 0.
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Chapter 9 – Friction

Friction is the force which resists relative motion between 
surfaces in contact with each other.
Friction is categorized by the nature of the surfaces in contact 
and the conditions under which they are interacting. 
1. Dry friction, which is the force that opposes one solid 

surface sliding across another solid surface. 
2. Rolling friction is the force that opposes motion of a 

rolling wheel or ball. 
3. Fluid friction is the friction between layers of a viscous 

fluid in motion. 
4. Skin friction, also called drag, is the friction that occurs 

between a fluid and a moving surface. 
5. Internal friction is the force resisting the internal 

deformation of a solid material.



9.1 – Dry Friction

• Dry friction, also called Coulomb friction, is a force 
which appears between two solid surfaces in 
contact.
• This force is distributed over the contact area and 

always acts in whichever direction opposes relative 
motion between the surfaces.
• Static Friction - hold the object in equilibrium
• Kinetic Friction - retard but not prevent motion



9.1.1 – Coulomb Friction

• The force of friction is proportional to the normal 
force, where the normal force is the force acting 
perpendicular to the contacting surface.

Ff = µN
• µ, is called the friction coefficient. µ is always 

greater than zero and commonly less than one.



9.1.1 – Coulomb Friction

• Friction has two distinct regions

• The region from point 1 to point 2, where the force of friction increases linearly 
with load is called the static friction region. Here you must use the coefficient of 
static friction µs.

• The region from point 2 to point 3, where the friction remains roughly constant 
is called the kinetic friction region. In this region you must use the coefficient of 
kinetic friction µk.

• Point 2 is called the point of impending motion



When force P is gradually increased from zero, the 
normal force N and the frictional force Ff both 
change in response. 
• Initially both P and Ff are zero and the object is in 

equilibrium. The interaction between the two surfaces in 
contact means that friction is available but it is not 
engaged Ff = P = 0.
• As P increases, the opposing friction force Ff increases as 

well to match and hold the object in equilibrium. In this 
static-but-not-impending phase Ff = P.
• When P reaches point 2, motion is impending because 

friction has reached its maximum value. Ff max = µsN = P. 
If force P increases slightly beyond Ff max , the friction 
force suddenly drops to the kinetic value Ff = µkN.



9.1.2 – Friction Angle and Friction 
Resultant
• The friction resultant is the vector sum of the 

friction and normal forces.

• The friction angle ϕs is defined as the angle 
between the friction resultant and the normal 
force.



9.1.3 – Normal Forces

• The normal force supporting the object is 
distributed over the entire contact surface, 
however it is common on two dimensional 
problems to replace the distributed force with an 
equivalent concentrated force acting at a particular 
spot on the contacting surface.



9.2 – Slipping vs. Tipping

• The point at which an object starts to move is 
called the point of impending motion.
• Two possible outcomes
• the maximum static friction force will be reached and 

the box will begin to slide, 
• or the pushing force and the friction force will create a 

sufficient couple to cause the box tip on its corner.



9.2 – Slipping vs. Tipping

• The easiest way to determine whether the box will 
slip, tip, or stay put is to solve for the maximum 
load force P twice, once assuming slipping and a 
second time expecting tipping, then compare the 
actual load to these maximums.
• Three steps to determine which outcomes occurs

1. Check slipping.
2. Check tipping.
3. Compare the results.



9.2 – Slipping vs. Tipping

1. Check slipping.
The maximum friction force is equal to the static 
coefficient of friction times the normal force

Ff max = µsN
Assume that the maximum normal force N is acting 
at an unknown location and solve for the applied 
force which will maintain equilibrium. If the load 
exceeds this value than this the body will slip or tip.



9.2 – Slipping vs. Tipping

2. Check tipping.
The object will tip when the resultant normal force N
shifts off the end of the object, because it no longer acts 
on the object so it can’t contribute to equilibrium.
Create a free-body diagram assuming that the normal 
force N acts at the far corner of the box and solve for the 
applied force which will maintain equilibrium. Any 
greater force will make the body tip, unless it is already 
slipping. At tipping, the friction force is static-but-not 
impending as it has not reached impending motion for 
slipping.



9.2 – Slipping vs. Tipping

3. Compare the results.
If P exceeds the smaller of the limiting values, it will 
initiate the corresponding impending motion. 



9.3 – Wedges

• A wedge is a tapered object which converts a small 
input force into a large output force using the 
principle of an inclined plane. 
• Wedges are used to separate, split or cut objects, 

lift weights, or fix objects in place. 
• The mechanical advantage of a wedge is 

determined by the angle of its taper; narrow tapers 
have a larger mechanical advantage.



9.3 – Wedges

Wedges are used in two primary ways:
1. Low friction wedges are a simple machines which 

allows users to create large output forces to 
move objects using comparatively small input 
forces.

2. High-friction (self-locking) wedges control the 
location of objects or hold them in place.



9.5 – Flexible Belts

• When a belt, rope, or cable is wrapped around an 
object, there is potential for flexible belt friction



9.5.1 – Frictionless Belts

A non-uniform distributed normal force acts at 
points of contact with the cylinder to oppose the 
tension in the belt and maintain equilibrium. 

Without friction, the two tensions must be equal 
otherwise the belt would slip around the cylinder.



9.5.2 – Friction in Flat Belts

• Without friction, the two tensions must be equal 
otherwise the belt would slip around the cylinder.



9.5.2 – Friction in Flat Belts

Contact Angle β
• The belt will depart the pulley at a point of 

tangency, which is always perpendicular to a radius. 
• To find β create one or more right triangles using 

the incoming and outgoing belt paths and apply 
complementary angles to relate the belt geometry 
to the contact angle



9.5.2 – Friction in Flat Belts

Belt Tension

Summing forces along the belt, we find that the tension T1 plus the 
distributed friction force ΣF must equal T2 for equilibrium. 
ΣFbelt = 0 
T1 + ΣF − T2 = 0 
T2 = T1 + ΣF
Therefore, the larger tension is T+ = T2 and the smaller tension is T− = T1



Change in Belt Tension due to 
Friction
• Applying the equilibrium equations to a free-body 

diagram of a differential element of the belt 
enables us to derive the relation between the two 
belt tensions, the contact angle β, and the friction 
coefficient µs.
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