A Note on Integrals & Hybrid Contours in the Complex Plane

John Gill July 2014

Abstract: Contour integrals can be expressed graphically as simple vectors arising from a secondary contour.

We start with a well-behaved (continuous, analytic, etc.) function in the complex plane:

(1) $\varphi(z,t)$, with $z \in S$ a convex set in $\mathbb C$ and $t \in [0,1]$. $\varphi(z,t) \in S \ \forall z \in S$ and $\forall t \in [0,1]$ Let

(2)
$$g_{k,n}(z) = z + \eta_{k,n} \varphi(z, \frac{k-1}{n})$$
, with $g_{k,n}(z) \in S$, $0 < k \le n$

Require $0<\eta_{_{1,n}}<\eta_{_{2,n}}<\dots<\eta_{_{n,n}}=1$ and $\lim_{_{n\to\infty}}\eta_{_{k,n}}=0$, where $k=1,2,\dots,n$.

Set
$$G_{1,n}(z) = g_{1,n}(z)$$
, $G_{k,n}(z) = g_{k,n}(G_{k-1,n}(z))$ and $G_n(z) = G_{n,n}(z)$

with $G(z) = \lim_{n \to \infty} G_n(z)$, when that limit exists.

Written in an alternate iterative form

(3)
$$z_{k,n} = z_{k-1,n} + \eta_{k,n} \varphi(z_{k-1,n}, \frac{k-1}{n}), z_{0,n} \equiv \alpha$$
,

the distribution of points forms a Zeno contour

(4)
$$\gamma_n(\alpha) = \left\{ z_{k,n} \right\}_{k=1}^n \implies \gamma(\alpha) = \lim_{n \to \infty} \gamma_n(\alpha).$$

The word *Zeno* denotes the infinite number of actions required in a finite time period if $\eta_{k,n}$ describes a partition of the time interval [0,1].

 $\varphi(z,t)$ is associated with a unique time-dependent vector field (TDVF):

(5)
$$\mathbb{F}$$
: $F(z,t)$, where $F(z,t) = \varphi(z,t) + z$.

Under benign conditions (3) admits an equivalent closed form:

(6)
$$\gamma(\alpha): z = z(t), \quad \frac{dz}{dt} = \varphi(z,t), \quad z(0) = \alpha.$$

Now suppose another well-behaved function $f(z,t) \in S$ is introduced. Set

(7) $\varphi^*(z,t) = f(z,t) \cdot \varphi(z,t)$ and create a new, hybrid contour in the following way:

(8)
$$z_{k,n}^* = z_{k-1,n}^* + \eta_{k,n} \cdot \varphi^*(z_{k-1,n}, \frac{k-1}{n}), \quad z_{0,n} \equiv \alpha,$$

with $\gamma_n^*(\alpha) = \{z_{k,n}^*\} \text{ and } \gamma_n^*(\alpha) \to \gamma^*(\alpha) \text{ as } n \to \infty$

Observe that φ^* is a function of <u>points on the original Zeno contour</u>. So that we now have two contours: $\gamma(\alpha)$ (in green) and $\gamma^*(\alpha)$ (in red) that are *siamese*, i.e., originating at the same point. The underlying TDVF is illustrated by vector clusters (black for t=0, green for t=1):

Example 1:

Rewrite (3) as
$$\sum_{k=1}^{n} f(z_{k-1,n}, \frac{k-1}{n}) \cdot (z_{k,n} - z_{k-1,n}) = \frac{1}{n} \sum_{k=1}^{n} f(z_{k-1,n}, \frac{k-1}{n}) \cdot \varphi(z_{k-1,n}, \frac{k-1}{n}) \implies$$

(9)
$$\int_{\gamma(\alpha)} f dz = \left[\alpha + \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \varphi^{*}(z_{k-1,n}, \frac{k-1}{n}) \right] - \alpha = G^{*}(\alpha) - \alpha$$

Thus the value of the integral is essentially the vector connecting α to $G^*(\alpha)$.

In Example 1 above
$$\varphi=\frac{2x}{1+2t}+\frac{2(y-2t^2)}{1+2t}i$$
 , $f=\varphi$ and $\alpha=1+.5i$. Then
$$\int_{\gamma(\alpha)}\varphi dz \approx 1.6627+4.0006i$$

If $f = \varphi$, a *very* well-behaved function,

(10)
$$\int_{\gamma(z_0)} \varphi(z) dz = \int_0^1 \varphi(z) \frac{dz}{dt} dt = \int_0^1 \varphi^2(z(t)) dt \quad \text{or} \quad \int_{z_0}^{z(1)} \varphi(z) dz \text{ for analytic } \varphi.$$

The notation $\int\limits_{\gamma(\alpha)} f dz$ represents $\int\limits_{\gamma(\alpha)} f(z) \, dz$ or $\int\limits_{0}^{1} f(z(t),t) \varphi(z(t),t) dt$

Example 2:
$$\varphi = xCos(yt) + iySin(xt)$$
, $f = (2x+t) + i(x-y-t)$, $\alpha = 1-i \implies \int_{\gamma(\alpha)} f dz \approx 5.4003 - 1.6223i$

Example 3: A simple case where direct evaluation is easily done:

$$\varphi(z) = 2z \implies z(t) = \alpha e^{2t}$$
, $f(z,t) = zt$, $\alpha = .5(1+i) \implies \int_{\gamma(\alpha)} f dz \approx 10.2995i$

Example 4:
$$\varphi = xCos(xt+y) + ySin(xt-y)i$$
, $f = 2Sin(x+yt) - 2Cos(x-yt)i$, $\alpha = 5(1+i)$

$$\Rightarrow \int_{\gamma(\alpha)} f dz \approx -3.3396 + 5.5439i$$

Virtual Integral vs secondary contour: Assume $\varphi = \varphi(z)$. Previously, a *virtual integral* was established in the following way:

$$\gamma_n(\alpha)$$
: $z_{n,n} = \alpha + \frac{1}{n}\varphi(\alpha) + \frac{1}{n}\varphi(z_{1,n}) + \frac{1}{n}\varphi(z_{2,n}) + \dots + \frac{1}{n}\varphi(z_{n-1,n})$

Now, by slight of hand, define

$$\psi(\alpha,t)$$
, $t \in [0,1]$ and $\psi(\alpha,\frac{k}{n}) = \lim_{m \to \infty} \varphi(z_{mk-1,mn})$, with $\int_{0}^{1} \psi(\alpha,t) dt$ defined:

$$G_n(\alpha) - \alpha = \frac{1}{n} \psi\left(\alpha, \frac{1}{n}\right) + \frac{1}{n} \psi\left(\alpha, \frac{2}{n}\right) + \frac{1}{n} \psi\left(\alpha, \frac{3}{n}\right) + \dots + \frac{1}{n} \psi\left(\alpha, \frac{n}{n}\right) \approx \int_0^1 \psi(\alpha, t) dt$$

So that

$$\int_{0}^{1} \psi(\alpha,t)dt = G(\alpha) - \alpha.$$

Under <u>perfect</u> circumstances $\gamma(\alpha): z = z(t)$ has a pleasant closed form and $\psi(\alpha,t) = \varphi(z(t))$, $\alpha = z(0)$. For example, $\varphi(z,t) = 2zt \implies \varphi(z(t)) = 2\alpha t e^{t^2} = \psi(\alpha,t)$

Therefore
$$\lambda(\alpha) = \int_0^1 \varphi(z(t))dt = G(\alpha) - \alpha$$
, whereas, in this note, $\int_0^1 \varphi^2(z(t))dt = G^*(\alpha) - \alpha$.

However, it is usually the case that $\psi(\alpha,t)$ cannot be easily described as $\varphi(z(t))$ and

$$\lambda(\alpha) = \int_{0}^{1} \psi(\alpha, t) dt = G(\alpha) - \alpha$$
 has a "virtual" integrand.

The notation $\int_{0}^{1} \varphi^{2}(z(t))dt = G^{*}(\alpha) - \alpha$ is used even when z(t) is indescribable.

Example 5:
$$\varphi = xCos(yt) + iySin(xt)$$
, $\alpha = 2.5 - 2i$ \Rightarrow

$$\lambda(\alpha) = \int_{0}^{1} \psi(z,t)dt = G(\alpha) - \alpha \approx .1789 - 1.7624i,$$

and
$$\int_{0}^{1} \varphi^{2}(z(t))dt = G^{*}(\alpha) - \alpha \approx 1.8830 + .4950i$$
. (Results hold for $\varphi(z,t)$)

Simplified, heuristic description of the process:

When the functions are analytic and integrations in closed forms are possible, we have

$$\frac{dz}{dt} = \varphi(z) \implies z = z(t)$$
 and $\frac{d\zeta}{dt} = f(z) \cdot \varphi(z)$, leading to

$$d\zeta = f(z(t)) \cdot \varphi(z(t)) \cdot dt = f(z)dz \quad \Rightarrow \quad \zeta(1) - \zeta(0) = \int_{\gamma(\alpha)} f(z)dz = \int_{0}^{1} f(z(t)) \cdot \varphi(z(t)) \cdot dt$$

Results are valid for f = f(z,t) and $\varphi = \varphi(z,t)$.

Equation solving...

Let us restrict our discussion to $f = \varphi$. Then what has been described previously fits the format

$$T(\varphi,\alpha) = \beta \iff \int_{\gamma(\alpha)} \varphi(z) dz = \beta$$

That is to say $T: C(S) \times S \to C$ where C(S) is the set of complex functions continuous on the set S and C is the complex plane.

Example 6: $\varphi(z) = \varphi(x+iy) = xCos(xy) + iySin(xy)$, with associated vector field $\mathbb{F}: F(z) = \varphi(z) + z$. Thus

$$T(xCos(xy) + iySin(xy), -2.5 + 1.8i) = \int_{\gamma(-2.5 + 1.8i)} \varphi(z) dz \approx -1.038 - .3289i$$

Example 7: Determine
$$\alpha$$
 satisfying the equation $T(2z,\alpha)=2i$. From $\frac{dz}{dt}=2z$, one finds $z(t)=\alpha e^{2t} \Rightarrow z(1)=\alpha e^2$. Therefore $2\int_{\alpha}^{\alpha e^2}zdz=2i \Rightarrow \alpha \approx \pm .1366(1+i)$

Example 8: Given $z(t) = \alpha(1+2t)+2t^2i$, $\alpha = 1-1.2i$, find β .

From
$$\varphi(z,t) = \frac{dz}{dt}$$
 we see that $\frac{dz}{dt} = 2\alpha + 4ti = \frac{2z}{1+2t} + \left(\frac{4t(1+t)}{1+2t}\right)i = \varphi(z,t)$.

Hence
$$\mathbb{F}: f(z) = \left(\frac{3+2t}{1+2t}\right)x + i\left(y+2\frac{y+2t(1+t)}{1+2t}\right)$$
, a TDVF

And
$$\int_{0}^{1} \varphi^{2}(z(t)) dt = 4 \int_{0}^{1} (\alpha + 2ti)^{2} dt \approx 2.5046 - 1.5950i$$

Example 9:
$$\varphi = \frac{1}{z}$$
 and $\beta = 2 + i$. Solve for α : $\mathrm{T}(\varphi, \alpha) = \beta$. From $\frac{dz}{dt} = \frac{1}{z}$, $z(t) = \sqrt{2t + \alpha^2}$ and the problem looks like this: $\int\limits_{\alpha}^{\sqrt{2+\alpha^2}} \frac{1}{z} \, dz = 2 + i$. Thus $\sqrt{2+\alpha^2} = \alpha \cdot e^{2+i}$ gives a solution: $\alpha \approx .10168 - .16128i$.

Attempting to solve $T(\varphi,\alpha) = \beta$ for φ requires more effort and may entail restricting the functional form.

Example 10: Solve for C:

$$T(Cz,i) = 1 + 2i$$

From $\frac{dz}{dt} = Cz$ one obtains $z(t) = ie^{Ct}$. Therefore $C \int_{i}^{ie^{C}} z \ dz = 1 + 2i$. Solving for C requires numerical techniques for intrinsic functions.

$$C \approx -.2724 + 3.9117$$
.

Example 11: Solve for $C: T(iCz,1) = 2+3i \implies C = -6+4i$

Example 12: Given $z(t) = C\alpha(t^2+1) - 2ti$ and $\alpha = 1$, solve $T(\varphi,1) = 4 - 2i$ for φ . $\varphi = 2(C\alpha t - i)$ and numerical computations give $C \approx -1.9734 + 1.8800i$

Final Comments . . .

Setting $\lambda(\alpha) = \int_{0}^{1} \psi(\alpha, t) dt$ and $\rho(\alpha) = \frac{1}{f(G(\alpha))}$, it is possible to write

$$\lambda(\alpha) = \rho(\alpha) \int_{\gamma(\alpha)} (f(z) - zf'(z)) dz - \alpha (1 - f(\alpha)\rho(\alpha))$$

Given a primary and a secondary contour,

$$\gamma(\alpha): z_{k,n} = z_{k-1,n} + \eta_{k,n} \varphi(z_{k-1,n}, \frac{k-1}{n}) \quad \text{and} \quad \gamma^*(\alpha): z_{k,n}^* = z_{k-1,n}^* + \eta_{k,n} T(z_{k-1,n}, \frac{k-1}{n})$$

$$\int_{\gamma(\alpha)} \frac{T(z)}{\varphi(z)} dz = G^*(\alpha) - \alpha$$

Enough of this trivia. I'm getting bored!