An Elementary Note: Operations on Contours in the Complex Plane

John Gill March 2015

I. Algebra of Contours (See [1])

Zeno (or equivalent parametric) contours are defined algorithmically as a distribution of points $\lim_{n\to\infty} \left\{ z_{k,n} \right\}_{k=0}^n$ by the iterative procedure: $z_{k,n} = z_{k-1,n} + \eta_{k,n} \cdot \varphi \left(z_{k-1,n}, \frac{k}{n} \right)$ which arises from the following composition structure:

$$G(z) = \lim_{n \to \infty} G_{n,n}(z) , G_{k,n}(z) = g_{k,n}(G_{k-1,n}(z)) , g_{k,n}(z) = z + \eta_{k,n} \cdot \varphi(z, \frac{k}{n}) , G_{1,n}(z) = g_{1,n}(z) .$$

Usually $\eta_{k,n} = \frac{1}{n}$, providing a partition of the *unit time interval*. $\gamma(z)$ is the continuous arc from z to G(z) that results as $n \to \infty$ (Euler's Method is a special case of a Zeno contour).

When $\varphi(z,t)$ is well-behaved an equivalent closed form of the contours , z(t), has the property $\frac{dz}{dt} = \varphi(z,t)$, with vector field $f(z,t) = \varphi(z,t) + z$. Siamese contours are streamlines or pathlines joined at their origin and arising from different vector fields. It will be assumed in most of what follows that all contours in a particular discussion have identical initial points.

Contours will be abbreviated, using the iterative algorithm, as

$$\gamma\colon z_{k,n}=z_{k-1,n}+\eta_{k,n}\varphi(z_{k-1,n},\tfrac{k}{n}) = z_{k-1,n}+\eta_{k,n}\left(f(z_{k-1,n},\tfrac{k}{n})-z_{k-1,n}\right)$$
 Or
$$\gamma\colon \frac{dz}{dt}=\varphi(z,t)$$

A parametric form of $\gamma(z)$: z=z(t), exists when the equation $\frac{dz}{dt}=\varphi(z,t)$ admits a closed solution. For example $\gamma: z(t)=z_0e^{t+2it^2} \iff \varphi(z,t)=z(1+4it)$.

A Contour Sum $\gamma = \gamma_1 \oplus \gamma_2$ is defined as follows: $\gamma: \frac{dz}{dt} = \varphi(z,t) = \varphi_1(z,t) + \varphi_2(z,t)$

For
$$\gamma_1: \frac{dz}{dt} = \varphi_1(z,t)$$
 and $\gamma_2: \frac{dz}{dt} = \varphi_2(z,t)$

And a Scalar Product:

$$\gamma = \alpha \odot \gamma_1 : \frac{dz}{dt} = \alpha \cdot \varphi_1(z,t),$$

Combined to show a distributive feature:

$$\gamma = \alpha \odot (\gamma_1 \oplus \gamma_2) = (\alpha \odot \gamma_1) \oplus (\alpha \odot \gamma_2) : \frac{dz}{dt} = \alpha(\varphi_1(z,t) + \varphi_2(z,t)) = \alpha\varphi_1(z,t) + \alpha\varphi_2(z,t)$$

A *Contour Product* is defined: $\gamma = \gamma_1 \otimes \gamma_2 : \frac{dz}{dt} = \varphi_1(z,t) \cdot \varphi_2(z,t)$, from which one derives

$$\gamma = (\alpha \odot \gamma_1) \otimes \gamma_2 = (\alpha \odot \gamma_2) \otimes \gamma_1$$

Define *Contour Composition:* $\gamma = \gamma_1 \circ \gamma_2$: $z_{k+1,n} = z_{k,n} + \eta_{k,n} \cdot \varphi_1(\varphi_2(z,t),t)$ or $\frac{dz}{dt} = \varphi_1 \circ \varphi_2$

A norm $\|\gamma\|$ of a contour in a z_0 - based space can be formulated as $\|\gamma\| = \sup_{t \in [0,1]} |\varphi(z_0,t)|$,

giving rise to a *metric*: $d(\gamma_1, \gamma_2) = \|\gamma_1 - \gamma_2\| = \|\gamma_1 \oplus (-1) \cdot \gamma_2\|.$

II. Operations on Contours

Set $\gamma_l : \frac{dz}{dt} = 1$, the identity contour $z(t) = z_0 + t$.

Define a linear operator

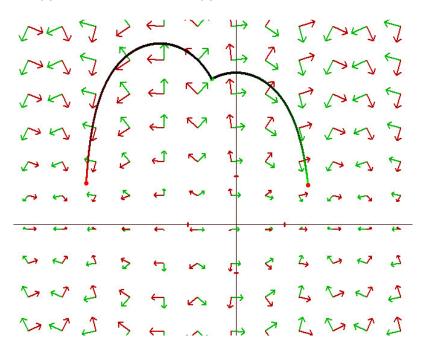
$$T(\gamma) = \alpha \cdot \gamma$$
: $\frac{dz}{dt} = \alpha \cdot \varphi(z,t)$ so that $T(\gamma_1 \stackrel{\dots}{\oplus} \gamma_2) = T(\gamma_1) \stackrel{\dots}{\oplus} T(\gamma_2)$

If we assume $\varphi(z)$ is analytic the following are linear operators as well:

$$\int \gamma : \quad \frac{dz}{dt} = \int \varphi(z) \quad \text{(in the sense of antiderivative)}$$

and
$$D\gamma$$
: $\frac{dz}{dt} = D_z \varphi(z)$

Example 1: γ : $\frac{dz}{dt} = Cos(z)$ \Rightarrow $\int \gamma$: $\frac{dz}{dt} = Sin(z)$. z = -.5 + 3i, γ green, $\int \gamma$ red.

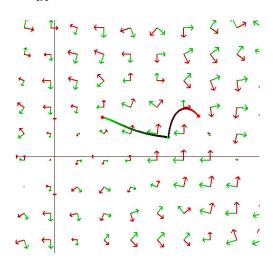


Contour exponentiation: $\gamma: \frac{dz}{dt} = \varphi(z) \implies \gamma^{\alpha}: \frac{dz}{dt} = \varphi(z)^{\alpha}$

Example 2: γ : $\frac{dz}{dt} = z^2$ $\Rightarrow \gamma^{1+i}$: $\frac{dz}{dt} = z^{2(1+i)}$, $z_0 = 1.5 - 1.5i$

Orthogonality of contours: $\gamma : \frac{dz}{dt} = \varphi(z)$, $\gamma^* : \frac{dz}{dt} = -i\varphi(z) \Rightarrow \gamma \perp \gamma^*$

$$\gamma: \frac{dz}{dt} = \varphi = xCos(x+y) + iySin(x-y)$$



Consider a contour γ : $z_{k,n} = z_{k-1,n} + \mu_{k,n} \varphi_1(z_{k-1,n})$, and a second function $\varphi_2(z)$.

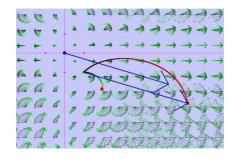
Define an *Integration Operator* $\gamma \varphi_2$: $\zeta_{k,n} = \zeta_{k-1,n} + \mu_{k,n} \varphi_2(z_{k-1,n}) \varphi_1(z_{k-1,n})$. Then

$$\zeta_{n,n} - \zeta_{0,n} = \sum_{k=1}^{n} (\zeta_{k,n} - \zeta_{k-1,n}) = \sum_{k=1}^{n} \varphi_2(z_{k-1,n})(z_{k,n} - z_{k-1,n}) \rightarrow \int_{\gamma(z)} \varphi_2(z) dz = \int_{0}^{1} \varphi_2(z(t)) \varphi_1(z(t)) dt$$

The result: The integral of the second function along the contour described by the first.

This is analogous to
$$\frac{dz}{dt} = \varphi_1(z)$$
 and $\frac{d\zeta}{dt} = \varphi_2(z) \cdot \varphi_1(z)$

A more complete description can be found in [2]. The vector $\overline{\zeta_{n,n} - \zeta_{0,n}}$ provides a graphical depiction of this integral.



Define a *Composition Operator* $\varphi_2 \circ \gamma$: $\zeta_{k,n} = \zeta_{k-1,n} + \mu_{k,n} \varphi_2 \circ \varphi_1(z_{k-1,n})$. An argument similar to the previous leads to

$$\zeta_{n,n} - \zeta_{0,n} = \sum_{k=1}^{n} \varphi_2(\Delta z_{k,n} / \mu_{k,n}) \mu_{k,n} \to \int_{0}^{1} \varphi_2(dz / dt) dt = \int_{0}^{1} \varphi_2(\varphi_1(z(t))) dt.$$

Analogous to

$$\frac{dz}{dt} = \varphi_1(z)$$
 and $\frac{d\zeta}{dt} = \varphi_2(\varphi_1(z))$

Define a Contour Mixing Operation

$$\mathfrak{M}(\gamma_1, \gamma_2)$$
: $z_{k,n} = z_{k-1,n} + \mu_n \varphi_1(\zeta_{k-1,n})$ and $\zeta_{k,n} = \zeta_{k-1,n} + \mu_n \varphi_2(z_{k-1,n})$,

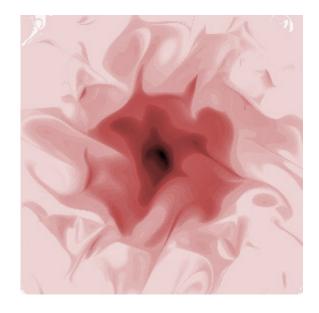
analogous to the system

$$\frac{dz}{dt} = \varphi_1(\zeta)$$
 and $\frac{d\zeta}{dt} = \varphi_2(z)$, $z = x + iy$, $\zeta = \tau + iv$

Example 4:
$$\frac{dz}{dt} = (\tau Sin(\tau + v) + vCos(\tau - v)) + i(\tau Cos(\tau + v) - vSin(\tau - v))$$
 and

$$\frac{d\zeta}{dt} = xCos(y) + iySin(x), \quad v_{\mathfrak{M}}(\omega) = \int_{0}^{1} z(\omega, t)\zeta(\omega, t)dt, \quad \omega = z(0) = \zeta(0)$$

Topographical image of the ω -plane:



Further mixing of contours:

$$\gamma_1: z_{k,n} = z_{k-1,n} + \mu_n \varphi_1(z_{k-1,n})$$
 and $\gamma_2: \zeta_{k,n} = \zeta_{k-1,n} + \mu_n \varphi_2(z_{k-1,n}) \zeta_{k-1,n}$

Expanding γ_2 two different ways:

(1)
$$\zeta_{n,n} = \zeta_0 + \frac{1}{n} \sum_{k=1}^n \varphi_2(z_{k-1,n}) \zeta_{k-1,n} = \zeta_0 + \frac{1}{n} \sum_{k=1}^n \varphi_2(z(\frac{k-1}{n})) \zeta(\frac{k-1}{n})$$

(2)
$$\zeta_{n,n} = \zeta_0 \prod_{k=1}^n \left(1 + \frac{1}{n} \varphi_2 \left(z(\frac{k-1}{n}) \right) \right)$$

Using the notation of virtual integral, (1) becomes

$$\zeta_{n,n} \approx \zeta_0 + \int_0^1 \psi_2(z,t) \zeta(t) dt$$

And simple manipulations produce the following form of (2)

$$\zeta_{n,n} \simeq \zeta_0 e^{\int_0^1 \psi_2(z,t)dt}$$

Combined, these two expressions give

$$\lambda(\alpha) = \int_{0}^{1} \psi_{2}(\alpha, t) \zeta(t) dt \simeq \alpha \left(e^{\int_{0}^{1} \psi_{2}(\alpha, t) dt} - 1 \right)$$

Observe that the contour along which integrals are evaluated is γ_1 .

This is analogous to

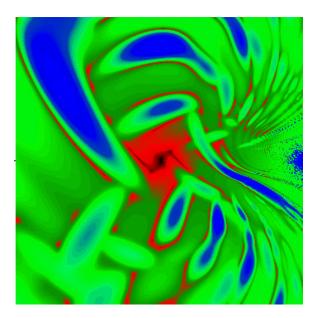
$$\frac{d\zeta(t)}{dt} = \varphi_2(z(t)) \cdot \zeta(t), \quad \frac{dz}{dt} = \varphi_1(z) \implies \zeta(t) = \zeta_0 e^{\int_0^t \varphi_2(z(t))dt}$$

Recall, under ideal conditions: $\psi(\alpha,t) = \varphi(z(t))$, $\alpha = z(0)$.

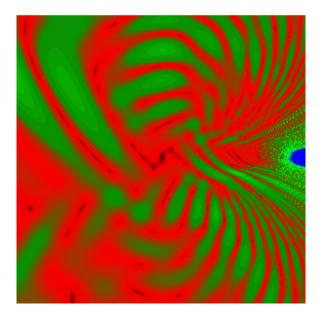
A general scenario:
$$\frac{d\zeta}{dt} = \varphi_2(z,\zeta)$$
 , $\frac{dz}{dt} = \varphi_1(z)$

Example 5a:
$$\varphi_1 = \frac{1}{10}z^2$$
, $\varphi_2 = xCos(x+y) + iySin(x-y)$, α - plane

$$\lambda(\alpha) = \alpha \cdot \exp\left(\int_{0}^{1} \psi_{2}(\alpha, t) dt\right)$$
, $\frac{dz}{dt} = \varphi_{1}(z)$, $z_{0} = \alpha$



Example 5b: $\frac{d\zeta}{dt} = \varphi_2(z(t))$, $\frac{dz}{dt} = \varphi_1(z) \Rightarrow \lambda(\alpha) = \int_0^1 \psi_2(\alpha,t)dt$, $\psi_2(\alpha,t) = \varphi_2(z(t))$



[1] J. Gill, A Space of Siamese Contours in Time-dependent Complex Vector Fields, Comm. Anal. Th. Cont. Frac., Vol XX (2014)

[2] J. Gill, A Note on Integrals & Hybrid Contours in the Complex Plane, Comm. Anal. Th. Cont. Frac., Vol XX (2014)