

CSU studies of air quality impacts of oil and gas development from local to

regional scales

Jeff Collett Department of Atmospheric Science

Potential air quality benefits of natural gas

- Natural gas offers a cleaner burning alternative to coal, with lower emissions of
 - SO₂
 - NO_x
 - Particulate Matter (PM)
- The higher energy intensity of natural gas also reduces CO₂ emissions

Source: U.S. Energy Information Administration (EIA)

Potential air quality impacts

Climate

- Methane (CH₄)
- Black carbon

Criteria Pollutants

- O_3 (VOC + NO_x + sunlight)

• $PM_{2.5}$ (particles < 2.5 microns)

VOCs (volatile organic compounds) and NO, (nitrogen oxides) are both emitted by O&G operations

Air toxics

 VOCs such as BTEX (benzene, toluene, ethylbenzene, xylenes)

Fine particle formation and haze

- Nitric acid production
 - NO + O₃ \rightarrow NO₂ + O₂
 - $NO_2 + OH \rightarrow HNO_3$
- Ammonium nitrate production
 - $NH_{3(g)} + HNO_{3(g)} <=> NH_4NO_{3(p)}$
 - Particles favored at low T, highRH
- Ammonium nitrate particles
 - Submicron
 - Remain several days in the atmosphere
 - Important cause of haze

W. Malm

PM_{2.5} nitrate concentration trends

- NO_x emissions reductions greatly reduced PM_{2.5} nitrate in much of U.S.
- Increasing winter nitrate in some regions

Increases
in U.S. oil
and gas
production
may be
relevant

Spatial patterns of methane and ethane

Methane elevated in oil and gas production and some other regions; ethane tied more directly to oil and gas

VOC signatures of oil and gas

- Ratio of i-pentane to n-pentane is unique for each oil and gas or urban region
- Measurements at all Bakken sites indicate regional influence from oil and gas activity

Pittsburgh, PA
Typical Urban Ratio
Natural Gas (Weld County, CO)
Detroit, MI
Denver-Julsberg Basin, Weld County, CO
Bakken Formation, ND
Thompson Farm, Durham, NH
SW PA (Marcellus Shale)

Bakken haze episodes

- Ammonium nitrate particles dominate winter haze
- Form over several hours during stagnation periods
- Key ingredients are NO_x and ammonia

Colorado oil and gas

Colorado development has occurred mainly in Weld (Denver-Julesburg Basin) and Garfield (Piceance Basin) counties.

CSU Garfield County and Front Range Studies

Garfield County Well Drilling Hydraulic Fracturing Flowback Production

Objectives

- Quantify emissions of chemical compounds (air toxics, ozone precursors, and methane) from oil and gas operations
- Characterize how these compounds are dispersed in the atmosphere downwind of the site
- Produce a public, high quality emissions dataset

Measuring emissions

- Several
 monitoring
 platforms to
 locate and
 sample emissions
 plume
- Tracer ratio
 method used to
 characterize
 methane and
 VOC emissions

Why measure emissions?

- Emissions are the amount of material emitted by an activity per unit time (e.g., grams per second)
- Air pollutant concentrations depend on
 - Emissions
 - Location
 - Weather conditions

- While concentrations are easier to measure, they provide information only for a single place and time
 - A meteorological model can be used to predict concentrations from known emissions for any place and time

Methane emissions in Front Range study

Methane emissions: flowback & liquids load out > production > fracking

Operation Type	Mean (g s ⁻¹)	Median (g s ⁻¹)
Fracking	0.29	0.051
Flowback	7.6	2.8
Production	5.7	0.60
Liquids load out	13.0	4.8

Methane emissions comparison

- Flowback and liquids load out >> drilling, fracking, and production
- During well completion: Front Range < Garfield County

Activity	Median emission rate (g/s)		
	Garfield County	Front Range	
Drilling	2.0	NA	
Fracking	2.8	0.051	
Flowback	40	2.8	
Liquids Load Out	NA	4.8	
Production	NA	0.60	

Garfield
County wells
are gas
producers

Front Range wells produce oil and gas

Front Range production site methane emissions

Nearly all methane emission rates observed from production sites were below 1% of methane produced, with a mean < 0.4%

VOC emissions – Front Range study (all operations)

VOC
 emissions
 vary
 widely by
 compound
 and for a
 given
 compound

Some VOCs of interest

- Alkanes ethane, propane, butane, pentane, ...
 - Important constituents of natural gas
 - Small alkanes not a major direct health concern
 - React slowly, but can be important contributors to ozone production when abundant
- BTEX benzene, toluene, ethylbenzene, xylenes
 - Air toxics → possible health concern
 - Can be emitted from oil and gas deposits and from combustion processes

BTEX emissions by activity – Front Range

- Liquids load out and flowback have highest BTEX emissions
- Production has lowestBTEX emissions

BTEX emissions comparison

Flowback

 Front Range and Garfield County BTEX emissions similar

Fracking

Front Range
 BTEX
 emissions
 Garfield
 County

Translating emissions to concentrations

- Modeled benzene concentration maps for a Front Range site
 - constant 0.001 g/s
 benzene emissions
- CDPHE-sponsored study now completing a more sophisticated health risk assessment using CSU Garfield and Front Range emissions

Comparison: current Fort Collins benzene concentrations $\sim 0.1-0.4$ ppbv

Hourly Benzene Concentration Variability

- Variable meteorology produces wide range of concentrations at a given point
 - 1 yr simulation, Front
 Range location 2000' from
 hypothetical pad,
 emissions typical of Front
 Range production site
- Average concentration increase is small
 - Individual hours
 occasionally significantly
 elevated at night

Source contributions to ambient air pollution

- 2018/19 CSU project with Garfield County
- Determine source contributions to ambient VOCs
 - Analyze variability in ambient VOC data to identify source profiles
 - Measure source profiles and fit them to ambient VOC data

Liu et al. (2016) Env. Poll.

Concluding thoughts

 CSU has examined O&G impacts on air quality at local to regional scales

PM_{2.5} and haze

Ozone

Methane

Air toxics

- At neighborhood scales, hourly air toxics exposure evaluation highest priority
 - Average conc. increase often modest compared to risk thresholds
 - Highest emissions come from limited-duration activities
 - Watch for forthcoming CDPHE O&G health risk assessment
- Ozone & PM_{2.5} increases potential concern on a regional scale
 - A few hours required to form these pollutants from direct emissions
- Climate forcing (methane) is a global-scale issue