1.0 Abstract



	Computer modeling is heavily used in the environmental assessment industry yet the models that are used are constructed without much thought to optimization, maintainability or versatility.  The models are typically implemented and then tested for accuracy of computation, but once these tests are complete the model is often difficult to change. Once an solution algorithm is implemented it is difficult to make fundamental changes due to the lack of funding.  



	This project will take a Partial Differential Equation (PDE) representative of those used in environmental assessments, and develop measures which indicate appropriate solution algorithms to use for different applications.  A model developer with knowledge of different solution algorithms for models can make a more informed choice before implementation, as well as understand the limitations of existing solution algorithms.  The systems that will be addressed can be described by a PDE with three dimensional dispersion, one dimensional flow and decay. The flow and dispersions terms are typically corrected for retardation due to the tortuous path water must take to move through soil.  To be of use to the environmental assessment industry, the PDE needs to be solved under the condition of a time varying release of a contaminant.  The three solution algorithms to be evaluated in this study are finite differencing using an alternating direction method, semi-analytical method using adaptive integration, and semi-analytical using a spectral convolution method.



�2.0 Introduction



	Partial differential equations (PDE’s) arise in many fields of science. To aid in the selection of PDE solution algorithms, a set of metrics to compare PDE solution algorithms is warranted.  In this study a set of four metrics- speed, accuracy, versatility and maintainability- are evaluated to test whether they serve the purpose of PDE solution algorithm selection. The PDE selected to illustrate these measures arises from efforts to predict the amount of contamination in groundwater for a time varying release of a contaminant into the groundwater system.[2][6][7][8]  The specific PDE is given in Equation 1 and will be referred to as the advective-dispersive equation.
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where	C		=	Concentration

	u*		=	Retarded flow rate

	D*x, D*y, D*z	=	Retarded pseudo-dispersive flow rates

	l		=	Decay coefficient



Retarded flow of a contaminant in the soil will be represented by u*.  Retarded dispersion of contaminant will be represented by D*x, D*y, and D*z, one value for each of the three dimensions.  Decay is represented by l.  The advective-dispersive equation is a PDE that has many existing numerical solution methods, but these methods are rarely compared.  When comparisons have been done, they focused on the semantics of the u*, D*x, D*y, D*z, and l parameters and did not include analysis of the accuracy, speed, maintainability, or versatility of the algorithms.[5]  The effects of choosing the wrong algorithm for application to a particular model will be long lasting in terms of the cost of maintenance and usefulness of the results.  For example, assume initially a solution algorithm which requires the retarded flow (u*) to be constant across the solution space has been implemented.  Later a specific assessment needs retarded flow (u*) to vary across the solution space.  The initial implementation might have to be significantly changed to meet the needs of the later assessment.  Once a solution method is implemented, debugged and applied, there is little motivation or funding to rework the fundamental solution, so it is important to make an informed choice of solution method initially.



2.1 Background



	None of the implementations developed in this study is the optimal version of this algorithm for solving the PDE; instead each is used to illustrate how the algorithm can be applied to the chosen PDE.  Source code from the reference book “Numerical Recipes in C” was used to demonstrate that the algorithms are built on code that is readily available.[4]  The most significant departure from the examples in “Numerical Recipes in C” is that most of the examples in that reference are limited to one or two spatial dimensions, whereas the formulations of environmental assessments are more complex than two spatial dimensions.  For each algorithm in this study development begins with the original PDE, equation 1, and derives a specific formulation.    

�3.0 Analytical Approach



	If an analytical solution to the PDE for an arbitrary release is available, numerical solution techniques would be inappropriate. No analytical solution to the PDE in this study exists for an arbitrary release of contaminant, but an analytical result for an instantaneous release does exist.  The instantaneous release analytical result is a fundamental part of the semi-analytical approaches.  Analytical results of an instantaneous release will allow test cases to be computed exactly.  These exact results will be used to test whether that the numerical methods are giving reasonable results.  Appendix A contains the derivation of the analytical formulations for an instantaneous release.  



	The derivation in Appendix A begins with the original PDE.  Then, for convenience, the decay term is temporarily dropped. After the decay term is dropped, separation of variables is employed, which results in three PDE’s that need to be solved. This results in one PDE for each dimension of space. Flow of the contamination is the primary difference between the x dimension and the y and z dimensions.  Elimination of this issue is accomplished by defining a new reference frame in which the flow is a stagnant fluid.  After this substitution, the resulting PDE in the x direction is identical to y and z.  An assumption is then made as to the final form of the result, given the initial point of contamination.  Each of the partial derivatives can then be rewritten as total derivatives.  Solving these derivatives and conserving mass gives a solution to the PDE for x dimension, in the stagnant fluid reference frame.  Integrating these stagnant frame results over the source area yields the solution for an line segment source in the direction of flow from an instantaneous release across this line source.  Applying the stagnant frame results to the y dimension produces the results for a y line source.  For the z dimension the source is assumed to be a point so the integration across the source is not needed. 



	The equation for C1(x,t) represents the X direction component of the analytical solution for a given distance x from the source, and at time t. 

Equation 2
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In Equation 2, l represents the length of the source in the X direction. Equation 3 restates the Y direction component of the analytical solution for a given distance y from the source, and at time t, from the formulations in Appendix A.

Equation 3
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The width of the site is represented by b in Equation 3.  The equation for C3(z,t) is the Z direction component of the analytical solution for a given distance z from the source and at time t.

Equation 4
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The source is assumed to be a point in the Z direction in equation 4.  Equation 5 is a term that insures mass balance in the analytical solution.

Equation 5
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Where Rf is the retardation factor and ne is the effective porosity of the soil.  Equation 6 is used to calculate the analytical result for a area source in the X and Y direction at a point.  That point is located at a distance of x,y, and z from the respective axis.

Equation 6
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	The equation for CI(x,y,z,t) is very useful for multimedia assessments, but the equation has one critical drawback as it is only for an instantaneous “spike” of contamination into the solution space.  The focus of both the semi-analytical algorithms in this study is to overcome the limitations of Equation 6.  

�3.1 Semi-analytical use of the analytical result



	To take advantage of the analytical analysis developed in appendix A, the semi-analytical algorithm uses these formulations as the response of the system to a instantaneous “spike” at the source.  To compute a solution for an arbitrary time varying input flux this result needs to be convolved with the input flux.  Conceptually convolution is taking the input flux and treating it as a set of instantaneous pulses.  Figures 1 and 2 demonstrate this concept.
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Figure 1



Figure 1 represents an example input flux and the response of the system to that input flux at a given point in space.  The units of g/yr and g/ml are for illustrative purposes as well.  Generally, if the units are unit of mass per unit of time for the flux and unit of mass per unit of water volume for concentration, then figure is representative.  The result is multiplied by ten to make the scale identical to the input flux.
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Figure 2



Figure 2 demonstrates the principle of convolving results for three separate input fluxes to obtain the concentrations in the system at the given point in space. Equation 7 is a mathematical representation of the process demonstrated in Figure 2.

�Equation 7
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where CR(t)	=	Resulting concentration at time t

	CI(t)	=	Instantaneous concentrations at time t

	f(t)	=	Flux into system at the source at time t



The convolution in Equation 7 can be accomplished by many means.  The semi-analytical approaches discussed here are distinguished by how the convolution is done.  

�3.2 Semi-Analytical using Adaptive Integration



The first semi-analytical approach makes use of a simple integration approach, which is integration by an adaptive trapezoid summation. This method is taken directly from page 121 of “Numerical Recipes in C”, first edition.  The advantage of this approach is that it is simple to implement and test.  To increase the speed of convergence in integration, two important issues need to be resolved: inclusion of the peak value, and integration limits.  

	The peak value is critical in getting the result to converge quickly.  This is due to the fact that if the peak is not included in the early estimates, the integration of lower resolution results will be orders of magnitude below the final result.  The specific data itself gives a good estimate of the time when the peak will occur.   The equation for the time of the peak is given by:

Equation 8
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This equation assumes that the D*x, D*y, D*z, and ( terms affect the arrival time less than the velocity of the flow.  Since D*x, D*y, and D*z are a function of the flow rate, u*x, and are typically much smaller than u*x, this is a valid assumption.



	The integration limits can eliminate trapezoids that are not of any significance in the final results and thus can increase the rate of convergence.  A simple example would be a function that has a value of  1 between the times 1 and 2 but zero everywhere else.  If the function is integrated with regularly spaced trapezoids between times 0 and 3, the result would take a number of iterations for the results to converge.  If the function is integrated between times 1 and 2, instead the answer would converge in two steps.  The limits of integration are obtained by an iterative approach that converges on the limits in log2(n) iterations, where n is the maximum number of subdivisions the interval may be divided into.  Essentially, only the first few digits are of significance.  To that end, the algorithm starts at the peak and moves toward time zero until it finds the point that is a prescribed amount below the peak.  The ending integration limit is found by assuming that there is some time at which the user would like to end the simulation. Then the algorithm chooses points toward the ending time of the simulation  until the value is again some prescribed amount below the peak.   �3.3 Semi-Analytical using Spectral Convolution



	Another approach in convoluting the instantaneous result and the input flux is to use the Fourier transform and it’s properties.  This algorithm uses the fact that a function h of time t has a transform equivalent function H of frequency f.  Stated mathematically where ( indicates transform pairs:

Equation 9
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Where h(t) represents a function of time and H is a function of frequency.  Essentially H is the Fourier Transform of h.  The function of convolution is represented by *.

Equation 10
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Equation 11
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Equations 10 and 11 assume that g and h are arbitrary functions of time and G and H are functions of frequency. Equation 11 shows that convolution of two time series can be accomplished by point multiplying the values of the Fourier Transforms of the two series.  To implement the convolution of two time series the following algorithm is used:  take the Fourier transform of g and h, where g and h are functions of time; multiply the amplitudes of G(f) and H(f) at the frequency f; finally compute the inverse transform of this result to obtain the convolution of the original two time series.  The benefit of this technique is that the Fast Fourier Transform algorithm is very efficient computationally.  



	An important issue that needs to be taken into account in using the Fourier Transform to compute the convolution is that the convolution of an n length function and an m length function is an n + m length function.  Padding is done by filling both functions with zeroes to a length of n + m then convolving the two functions together.  The functions that are going to be convolved have to be a length that is a power of 2 for the Fast Fourier Transform algorithm to work.  For example, if n=10 and m=11 then n+m=21 the length of the series needs to be increased to 32.  The additional values in the function can be padded with zeroes as well.  A routine for computing the Fast Fourier Transform is taken from “Numerical Recipes in C”, page 411.  



	An additional complication in this application is that the spacing in the two time series is not identical.  Reconciling this issue is nearly impossible in the time domain.  This would require that the size of the time steps to be the smaller of the two series and the duration would have to be the longer of the two series.  Resolving this issue in the frequency domain is less complicated.  All that needs to be done when two points are going to be multiplied together is to insure that the two frequencies are the same.  This implies that if you use the frequency response that has the wider bandwidth, and then interpolate the values on the narrower bandwidth, no other adjustment will be needed to get the correct convolution of the two series.  



�3.4 Finite Difference Alternating Direction Implicit (ADI) Method



	The approach in using a finite difference algorithm for solving a PDE is to replace the partial differentials with finite differences.  Strictly using the definition of a partial differential and replacing it with discrete variables, then assuming a set spacing in the dimension will result in a finite difference equation.  An example is:
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	An explicit set of finite difference equations assumes that only the current and previous time steps are needed to compute the next time step.  This is convenient because it only requires the substitution of the current and previous values into the difference equations to obtain the next time step.  This approach suffers from stability errors if the amount of time that is to elapse in a single time step is too great.  As applied to the problems in this study, if the time step is too large, the contaminant cannot flow to the correct location by the time it should.   This error  is due to the fact that not enough time steps have occurred to make it possible for the contaminant to flow to the correct location.  This condition is called the Courant Condition.  



	An implicit set of finite difference equations assumes that the next, current, and previous concentrations are needed to compute the concentration in the next time step.  Since the next set of concentrations could be used to compute this same set of concentrations the equations have to be solved simultaneously.  This approach is more complex, but is stable for larger time steps.  In some cases the implicit set of equations are unconditionally stable.  When creating the set of equations care needs to be taken to create a set of equations that is efficient to compute.  For example, if the resultant set of equations is essentially a tridiagonal matrix, two passes on the matrix can yield the solution.  If the advective-dispersive equation is defined in one time dimension and one space dimension it would yield such a set of equations.  The most important issue to address is whether to use an explicit or implicit method.  An implicit method was chosen because of the increased stability it provides. 



	The largest issue with the choice of an implicit method is that a system of equations needs to be solved at the same time.  In equation 1, three space dimensions and one time dimension need to be handled.  To have the ability to solve this PDE in the same manner a splitting of the equation is applied.  This splitting is done along the individual dimensions of the equation.  Starting with the original PDE:  

Equation 13
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Splitting this operation into three separate equations along the different dimensions yields
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�EMBED Equation.2���



The partial differentials are then replaced with implicit finite differences.  The notation for the finite differences is that superscripts denote the time steps and the subscripts denote the spatial dimensions.  For example Ctx,y,z is the concentration at time t and location x, y, z.  The step size in the time and space dimensions are dt, dx, dy and dz.

Equation 17
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Collecting together the Ct, Ct+dt/3, Ct+2dt/3, and Ct+dt terms for each equation gives

 

Equation 20
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Each of these equations represents a system of equations that needs to be solved for each partial time step.  These equations are used for all of the interior points of the grid, but special assumptions and equations are made at the boundaries.  An assumption is made that the concentration is reflexive across the X, Y and Z axes. In other words the Ct+x,y,z = Ct-x,y,z, Ctx,+y,z = Ctx,-y,z and Ctx,y,+z = Ctx,y,-z for all t, x, y, and z. Therefore the equations at the points Ct0,y,z and Ctx,0,z assume this; the new forms are:

Equation 23
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Equation 24
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The equation for the points near the z axis is similar.  For points on the opposite side of the grid, the concentration outside the boundary is assumed to be 0.  If X is the last point in the x direction the equation for CtX,y,z is

  

Equation 25
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If Y is the last point in the y direction, the equation for Ctx,Y,z is

Equation 26
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	The derivation of the Finite Diference method is much simplier than that of the Analytical result.  The most difficult piece of information that is needed to use this result correctly is, what value of dx, dy, dz, and dt to use to get relatively accurate results.  Even if the differencing scheme is stable and convergent choosing dx,dy,dz and dt poorly will yield inaccurate results.

�4.0 Test case development

	

	The purpose of the test cases is to demonstrate that the solution values the three programs compute are reasonable.  While there is an infinite number of values for the parameters, only a few bounding cases need to be checked.  Many of the parameters are cross correlated.  The cross correlated parameters are u*, D*x, D*y, and D*z.  This cross correlation is due to the fact that most of the dispersion in a geophysical system is created by the tortuous path the water must take to move in soil.  This implies that if the flow rate (u*) increases the dispersion terms (D*x, D*y, and D*z) must increase as well.  The bounding cases need only cover the minimum and maximum values of u* and (.  The decay constant ( is a concern only in cases where the travel time is long enough for the decay process to change the concentrations significantly. (‘s largest value should then be associated with the cases that have the longest transport times.  Only two extremes need to be covered in the test cases: short transport time and long transport time.  When the values of transport time are compared between these two extremes, the values are orders of magnitude different.  To insure that the middle range cases are also solved well , a log average is taken of the two extremes as a third case.  In summary, Case 1 is a long transport time case to a near receptor, Case 2 is the log average case between the extremes, and Case 3 is short transport time case.



	Another test-related issue is how each method handles cases that have a complex source flux.  Two cases are used to test for any inconsistencies between the results.  The two cases are (1) a simple spike release for one year and (2) a more complex release that consists of two spikes: the initial spike  in the first year followed by another at the time that the plume of the first is halfway through the layer.  In tables below the cases 1A, 2A, and 3A are the simple input flux cases and 1B, 2B and 3B are the more complex source cases.   The minima and maxima were taken from the Multimedia Environmental Pollutant Assessment System (MEPAS) application guidance, and formulation documents.[1]  MEPAS is a well-documented code and its guidance is complete and useful for the kind of assessments where the PDE of interest is applied.  Table 1 summarizes the values assumed for u*, (, D*x, D*y, D*z, and the travel distances.  The Darcy flow velocity u represents how fast the water is moving in the soil.  Rf is the retardation factor of a given contaminant. Alpha X, Alpha Y, and Alpha Z represent the pseudo-dispersion given the distance the contaminant is going to travel. These three terms capture how the contaminant spreads as it moves through the solution space. Lamba is the decay coefficient of the constituent due to radioactive decay or chemical breakdown. Bd is the bulk density of the soil that the contamination is moving through.  It is a measure of how much the soil weighs per unit volume of soil.  The ne parameter is effective porosity of soil, which represents the fraction of the volume that the water can move through.  Kd is the ratio of contaminant that is in the water given the contaminant attached to the soil.  Dmol represents the molecular diffusion in the system, and is usually assumed to be a constant.  Tr represents distance that is covered by a simulation.  The extremities for Tr are reasonable values for this complexity of model in environmental assessments. The value for ( used in equation 5 is shown in the column labeled alpha.� 
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�5.0 Comparison of Results



5.1 Result Metrics



	The effectiveness of each algorithm in this study is compared to the other algorithms by four measures: speed, accuracy, maintainability, and versatility.  Speed and accuracy are quantitative measures; maintainability and versatility are qualitative measures in this study.  Of the four measures speed is the easiest to gather results by simply measuring the elapsed run time of each algorithm. 



5.2 Speed



 	The theoretical asymptotic time complexity of computation should give a feel for the the increase in speed as the number of time points is increased.  The asymptotic time complexity of the adaptive algorithm will not be constant, it may vary widely by how the resulting convolution converges.  On average it should obtain results in  O(N) where N is the number of time values to report for each point in space.  This is derived from the fact that at each point in time the number of integration steps needed to converge is independent of the number of time points reported. Table 2 contains the results of varying N for the semi-analytical method using adaptive integration. The increase in runtime agrees with theoretical time complexity given above.  



	In contrast to the semi-analytical using adaptive integration, the time complexity of the spectral method does not vary depending on the complexity of the two functions to be convolved, if the number of time points to be reported is held constant.  When N, the number of time points reported, is varied the time complexity should theoretically be O(NlogN).  This accounts for the two Fast Fourier transformations and one inverse Fast Fourier transformation, as well as the additional factor of N for the multiplications needed to compute the convolution in the frequency space.  Table 2 shows the results of varying N for the semi-analytical method using the spectral convolution algorithm. Due to memory limitations and the specifics of  implementation, the spectral algorithm with  N > 400 runs could not be completed.  Therefore no conclusion can be drawn as to whether the increase in runtime concurs the asymptotic time complexity.



	Like the semi-adaptive method using spectral convolution, the finite difference algorithm's complexity is constant if the number of time points to report is constant.  If the number of time points to report is varied the time complexity should theoretically be O(N).  It takes 3*X*Y*Z operations for each of X*Y*Z points for each time step, where X, Y, and Z are the number of points in each dimension. This is the best asymptotic time complexity of the three algorithms presented here. Table 2 shows the result of the finite difference run times while varying N.  The increase in runtimes agree with theoretical time complexity given above.

�Table 2
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	Each program had code added to it that captured the system time before the calculation was started and again when calculation is completed.  The difference in time is written to the result file along with the time varying concentrations.  The total time for a run is divided by the number of calculated points in the solution.  This method was the basis for comparison of actual execution times for the algorithms.  The advantages and disadvantages of the number of points computed is dealt with in the more subjective measure of versatility.  The results of the speed comparisons are summarized in Table 3. Each value is in seconds per point computed for the entire time interval.  



Table 3
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	It is important to notice that the finite difference method is two orders of magnitude faster than the other two methods.

�5.3 Accuracy



	The accuracy measure in this study is obtained by computing the mean squared error for each test case. This measure does not give the exact error between the computed  results and the analytical result for all solutions.  It is however a good measure for comparison of the algorithms.



	The accuracy of the semi-analytical adaptive method is determined strictly by the accuracy of the integration method used.  This limitation on error propagation is a major benefit of the semi-analytical approach.  Thus, the error at any location and time is a function of the computation for that location and time, not from any other points or times.  The integration method used in the semi-analytical approach iteratively divides the integration interval into smaller pieces.  The number of divisions increases by a power of two for each level of detail.  In other words 2N subdivisions were used in the Nth level of computation.  The absolute error is on the order of dt/2N in the Nth level of computation, where dt is the minimal time step.  The maximum value of N was chosen to be 10, therefore the lowest error is on the order of dt/210. Convergence to a consistent concentration might be achieved with fewer than 1024 summations.  Unlike the other algorithms studied here, only this integration method allows the user to specify an acceptable relative error to assume the integration has converged to a stable concentration. Table 4 contains the mean squared error for each test case at a selected time point.



	For the spectral method the relationship between the convolution in time  and the  point multiplication in frequency is exact. Thus, the majority of the error in the convolution using spectral methods is determined by how well the input and response functions are discretized.  The accuracy of the spectral method is therefore determined by the number of subdivisions made in the response and flux functions that are to be convolved together. The error in the approximation is related to the Nyquist critical frequency, that is fc=1/2([4]. In this instance the critical frequency could be represented by fc=N/2(TN-T0) where N is the number of time points; TN and To are the times at N and 0 respectfully.  If a function contains alternating values that occur more frequently than can be sampled by N samples, that frequency and higher will be aliased to a lower frequency.  This error in approximation can be remedied by increasing the number of samples to a value that will increase the critical frequency to an acceptable value.  Table 4 shows the mean-squared error for the test cases.



	The accuracy of the finite difference method is determined by both the difference equations used, and the number of points that are calculated.  The major difference between the semi-analytical method and this method is that the error propagates through time and space for the latter.  To increase stability and convergence an implicit set of equations was chosen.  The accuracy of Crank-Nicholson differencing scheme is  second order accurate in time[4]. When higher accuracy is needed an increase in the number of time steps or the number of points computed will remedy this issue. Assuming that X, Y, and Z represent the number of points in each dimension and T is the number of time points, an increase in the number of x-dimesion points from X to X+M will require 3*M*Y*Z*T additional computations to be done. Table 4 contains the mean squared error of the test cases for the finite difference algorithm.

�Table 4
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	All three algorithms have the capability to adjust the accuracy of results.  The adaptive algorithm includes a feature that allows the acceptable relative error to be input into the integration calculation.  While this feature is an advantage it should be used with caution, due to the fact that a small increase in the accuracy required can significantly increase the number of calculations.  The spectral algorithm error is harder to evaluate but can be controlled by increasing the number of time intervals.  Specifically, if the input flux or response contains rapidly alternating values the number of time samples should be increased to insure that each cycle is captured in at least two samples.  The finite difference method error can be controlled by increasing the number of time divisions or space divisions.  Generally, if the error is unacceptable in a single dimension it is necessary to increase the number of intervals in that dimension, but if error is common to the entire solution it is more useful to increase the number of time intervals.  None of the three algorithms demonstrates significant advantages in accuracy, over the other methods but all demonstrate significant increase in computation time is required for increased accuracy.



	It is important to note that the absolute value of the concentration is important but not critical to the use of the algorithm.  Since all models are an approximation of the real world the actual measurement of concentration in the environment is probably different than the value predicted by a model.  The safest use of a model is not to use it in absolute prediction of the concentration but instead in a relative comparison of concentrations.  These set of concentrations should be determined by type of comparison that needs to be done. For example, if an application needs to determine if decreasing flow rate and increasing the flux rates will result in a higher or lower concentration two runs could be performed.  The first run would assume the highest flow rate and lowest flux rates.  The second would assume the opposite case.  A comparison can then be done that provides an answer to the posed question.  In cases were no comparison is needed only the concentration value the user should consider an uncertainty analysis of the result.  The purpose of the uncertainty analysis would be to give a distribution of the concentrations to the user given distributions of the parameters of the PDE.  



Although relative comparisons and uncertainty analyses can reduce the dependency on accuracy, a model that inaccurately predicts concentrations can be very dangerous.  The danger lies in that unless the user has the “correct” concentration to compare with he cannot know how inaccurate the result is.  In this study both the Finite Difference using Alternating Direction Implicit algorithm and Semi-Adaptive using Spectral Convolution exhibit this behavior.  While in case 1a, 2a, 1b, and 2b they predict concentration well in case 3a and 3b the result is very inaccurate.  The inaccuracy could be reduced in the Finite Difference approach by increasing dx, dy, dz, or dt but the issue is what value of dx, dy, dz, and dt to use.  Even if the differencing scheme is convergent and stable setting dx, dy, dz, and dt too small will result in long runtimes when larger values would produce nearly the same accuracy.  The Semi-Adaptive using Spectral Convolution has a similar argument for dt although dx, dy, and dz do not have bearing on accuracy.

�5.4 Description of Test Case Results



	Due to the fact that the errors reported in Table 4 do not provide enough information on the error in results calculated by each method, a plot of the results of each test case is provided in the following pages.  Each plot is at a time t, when the contamination is halfway through the system.  The measurements on the “X” and “Y” axis are in cm and the concentration, denoted by “Conc.”, is in g/ml.  The results of the calculations are labeled for each algorithm.  The labels are “Analytical” for results that use the analytical formulations to compute concentration.  “Adaptive”, “Spectral Convolution” and “Finite Difference” are used to label the semi-analytical using adaptive integration algorithm, semi-analytical using spectral convolution algorithm, and finite difference using alternating direction algorithm, respectively.  The position in the Z dimension of these plots is set to the top, Z=0, of the space being simulated, this insures that the concentrations are the highest.  The concentrations are highest at the top of the system because the contamination is released at the top.



	The Case 1a results show a good correspondence between the analytical and the semi-analytical method using adaptive integration.  While the shape of both the “Spectral Convolution” and “Finite Difference” results are similar to the analytical result, the concentration is orders of magnitude different.  For the “Spectral Convolution” method this is due to the fact that the test case assumes a spike and that spike inherently contains changes that exceed the Nyquist Critical frequency, discussed earlier.  The error between the “Analytical” and “Finite Difference” results is probably due to the grid size chosen. 



	Case 2a shows good correlation between all four results as all results are on the same order of magnitude.  The good results for this case are artificial as it was used to insure all the methods could give the same result.  The grid is larger in this case because the larger grid made the concentrations for the “Finite Difference” result more closely match the “Analytical” result.  The most interesting structure in this set of results is the lack of smoothness in the “Spectral Convolution” result.  This is again due to the fact that the test case input flux rates change much faster than the Nyquist Critical frequency. 



	The results for Case 3a are the most errant of the results for simple input flux.  Like the earlier two sets, of results the “Analytical” and the “Adaptive” results are in agreement, but the “Spectral Convolution” and the “Finite Difference” results are not close to the “Analytical” result.  The concentrations reported for the “Spectral Convolution” algorithm are in fact all negative.  Negative concentrations make no physical sense.  Case 3a and 3b appeared to create the greatest inaccuracies in the “Finite Difference” and “Spectral Convolution” algorithms. 



	The behavior of Case 1b, Case 2b, and Case 3b are similar to the simple flux examples of Case 1a, Case 2a, and Case 3a.  The most notable difference is that the error between the “Analytical” result and “Adaptive” results increases.  Generally, if good correlation is achieved in a simple flux rate case then it appears it will be achieved on the more complex flux rate cases.  �������5.5 Versatility



	The versatility metric is a subjective measure of how well the solution can be used in a variety of applications.  If two methods are comparable on the other measures then a more versatile algorithm should be chosen. The primary advantage of the spectral method for convolution is speed, yet it maintains the advantages of the semi-analytical reduced error in some cases.  This method is faster than the adaptive integration method.  The spectral method is more restrictive in the sense that the input flux needs to be continuous and bandwidth limited in order for the FFT to discretize the flux appropriately.  Thus, this restriction does not eliminate the many applications because input flux rates are usually Gaussian or exponentially distributed.  These flux examples are continuous in the region of interest and therefore do not eliminate the spectral method from being applied.



	Both of the semi-analytical approaches share many versatile features, the most important of which is that the solution can be solved at any point and at any time without calculating other points and times.  Often an individual point over time is required for a solution to provide the needed results to a risk assessment tool.  Many programs used for environmental assessments specify that very few locations be used in a risk assessment.  MEPAS for example, only allows 10 solution points to be used during one assessment.  If a plot of the contaminant plume is desired, only the spatial solution at the time of interest need be computed.  This type of result is needed when an understanding of the extent of contamination is of interest.  In contrast to the finite difference method, the semi-analytical algorithms do require that the parameters of the PDE are constant for all time and space.  Constant parameters imply that no heterogeneity is tolerated in the semi-analytical algorithms.  



	On the other hand, the finite difference method can accept the parameters of the PDE changing with time and space.  There are many applications where this type of solution is needed, such as when the parameters for the PDE have been measured in the environment and observed to change with time and location. The major drawback for the finite difference algorithm occurs if the solution is needed at only a few points or for a few times: a grid of a larger size for all the time leading up to the time of interest would need to be computed.  This is true even though the results are not required for further analysis.  The error in the finite difference method is also propagated to all points and times, and the error can be large in some cases.  The error is difficult to control little information is available on what value of dx, dy, dz, and dt will give most accurate results in the smallest runtime.



	In summary, the semi-analytical methods are good choices for applications where the solution of interest is a specific time or location.  If the input flux is continuous, then the spectral method is a fast method for computing results even though in some cases the answer is highly inaccurate. If a large number of points for all time are needed the finite difference algorithm is a good choice, assuming some approach for choosing optimal values of  dx, dy, dz, and dt is available.  In this study not such approach was determined and should be researched further.

�5.6 Maintainability



	The readability of code is critical to the cost of maintenance of the program.  Readability normally would be a difficult item to compare if the programs where written by different individuals in different languages.  Since the programs were all written by the same individual in the same language this measure is more easily obtained.  The author attempted to make all three programs as readable as possible.  Readability in this context is defined as how closely the documentation for the program matches the formulations.  To aid the readability of the programs, they are formatted in a standard C manner.  Comments are limited to description of subroutines and clarify any obscure code.  Another issue in maintainability should address how long it would take an unfamiliar programmer to understand the code well enough to make a modification correctly.  Documentation of the program is critical to make efficient modifications.



	The semi-analytical method using adaptive integration algorithm is straight forward to implement and the code is in almost perfect correspondence to the formulations.  Although both of the semi-analytical approaches have this feature, the numerical derivation of the analytical solution used is not often documented in the code.  These derivations are not trivial, and many assumptions are made that are important to the application of these methods.  Thus, it is important to realize that for these methods the documentation of derivation is as important as the readability of the code.  



	The spectral method is slightly more complicated than the adaptive method in that it requires a good understanding of Fourier transforms and convolution using Fourier tranforms.   The most obscure issue with spectral convolution is that the input and response function need to be padded to a length that will disallow circular convolution.  Any reasonable description for using the Fourier transform for convolution will deal with this concept well.  In the implementation of convolution, an additional complication is added whereby the time basis of the response and input function are not required to be the same.  To overcome this issue the values in the frequency domain need to be interpolated to insure that when multiplication is done the two frequencies being multiplied are the same. Once the interpolation is added to the algorithm the inverse Fourier transform of the data will return the convolution of the input and response functions.  The maintenance of this spectral convolution is more complicated than the adaptive method.



	The finite difference method has some aspects of maintainability that it shares with the other two methods.  As with the other algorithms, the issue of documentation of the derivations is critical with finite difference algorithm.  Also of importance are the boundary conditions as they pertain to the derivation of the finite difference algorithm.  In some situations it is necessary to have a set of equations that is specifically used for the points on or near the boundary of the region being computed.  An understanding of implicit and explicit finite difference methods is needed to maintain this algorithm as well.  An understanding of implicit sets of finite difference equations would include the matrix methods needed to solve the set of equations that is developed in these methods.  Typically the set of equations is tridiagonal and can therefore be solved rather simply.  The finite difference algorithm has one other very important maintenance issue,  relating to the memory required to store the current state of the solution.  For a very small number of grid points this is not an issue but it can be for grids as small as 100 X 100 X 100.  While memory storage is not a critical issue for this algorithm, it is important to maintenance if memory resources are a premium on the machine where the algorithm will be implemented.



	None of the three methods has clear maintenance advantages over the others.  Maintenance on these three methods requires a clear understanding of the derivation of the formulations associated with each algorithm.  Maintenance of the all three methods is more a function of the clarity of programming, documentation, and style of the code writer than of the specific algorithm.  The spectral convolution algorithm and the finite difference algorithm might encounter maintenance problems on machines that are memory limited. If the programmer responsible for maintenance is aware of the issues it should not increase the cost of maintenance significantly.

�6.0 Conclusions



	The purpose of this study was to enable model creators to make a more informed decision as to which of three algorithms is most appropriate for the application to the solution of chosen class of PDE.  Initially it was assumed that one method would be clearly better suited for this application.  The results show that any one of the methods could be an appropriate choice depending on the specific details of the application.  Two measures did not provide any insight into which algorithm would be a better choice.  The accuracy measure essentially indicated that all three methods could have the same accuracy at a potential cost of speed. Although, an approach for choosing the step size in space and time is critical for reducing the errors to an acceptable amount while optimizing performance if the finite difference approach is used.  Maintenance of each algorithm was similar, as well, given that the documentation was available and complete.  The speed of each algorithm indicates that if speed is important to an application then algorithm selection is important.  If speed is important the specifics of the application should be considered first.  For example, if only a single point for a few times is needed and the input flux is not continuous the adaptive integration would be a good choice.  Even though the finite difference and semi-analytical using spectral methods show that they are faster than the semi-analytical using adaptive integration, both are limited in area of complex input flux. The critical information to gather before deciding on one of the algorithms is the number of points and times of interest to the user as well as the continuity of the input flux.  If speed of results is also an important issue then that information should be used in the decision process. Rather than being able to see that one method is superior to the others in all cases it appears that the requirements of the application should dictate the method to be used.
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Whelan, G. Letter to author. 10 January 1997�Appendix A. Derivation of Analytical Formulation



This derivation was modified from the original given the author by Dr. Gene Whelan.[9]  The modification basically removed the assumption of an constrained aquifer, and that the s
ource is always an area source.


Start with original partial differential equation.

Equation 1

	�EMBED Equation.2���

where	C		=	Concentration

	u*		=	Retarded flow

	D*x, D*y, D*z	=	Retarded pseudo-dispersive flow

	l		=	Decay coefficient





First the (C term is dropped from Equation 1 for temporary convenience and will be addressed later:



Equation 2

�EMBED Equation.2���

Solve Equation 2 by separation of variables.  

Assume:



Equation 3

� EMBED Equation.2  ���



where a 	=  	mass conservation term (solved for later)



Substitute Equation 3 into Equation 2:



Equation 4

� EMBED Equation.2  ���



Now reduce Equation 4:



Equation 5

� EMBED Equation.2  ���

Rearranging Equation 5 gives:



Equation 6

� EMBED Equation.2  ���



One solution is to assume the quantities in the brackets are each equal to zero.  Assume this is the case and solve for C1, C2 and C3:



Equation 7

� EMBED Equation.2  ���

Equation 8

� EMBED Equation.2  ���� EMBED Equation.2  ���

Equation 9

� EMBED Equation.2  ���

Solving for C1: Change the coordinate system so that a stagnant fluid occurs: Assume:



Equation 10

� EMBED Equation.2  ���



Remembering mass balance in regards to the alternate reference frame of (:



Equation 11

� EMBED Equation.2  ���



Differentiating Equation 10 with respect to x and t and remembering that:



Equation 12

� EMBED Equation.2  ���

then

Equation 13

� EMBED Equation.2  ���

and

Equation 14

� EMBED Equation.2  ���

This states that the flow velocity in the alternate reference frame is zero.  It also states that ( is a constant and, therefore with respect to the original reference frame, the alternate reference frame is moving with velocity -u*x equal to that of the flow in the original reference frame.



Substituting Equation 14 into Equation 11 gives:

Equation 15

� EMBED Equation.2  ��� 

Let M be mass per unit area of diffusing material. Solving Equation 14 for C1:

Assume the solution has the form of:



Equation 16

� EMBED Equation.2  ���

where

Equation 17

� EMBED Equation.2  ���

in which ( corresponds to the point where the mass M is released at the instantaneous time, t, equaling zero

Solve for derivatives:

Equation 18

� EMBED Equation.2  ���

Equation 19

� EMBED Equation.2  ���



Equation 20

� EMBED Equation.2  ���

Equation 21

� EMBED Equation.2  ���

Equation 22

� EMBED Equation.2  ���

Substitute in equations 20, 21, and 22 into equation 15 and remembering that � EMBED Equation.2  ���� EMBED Equation.2  ���then:

Equation 23

� EMBED Equation.2  ���

but

Equation 24

� EMBED Equation.2  ���

Substituting equations 24 into equation 23 gives

Equation 25

� EMBED Equation.2  ���

Integrating with respect to ( gives:

Equation 26

� EMBED Equation.2  ���

in which C0 is the constant of integration.  The boundary condition states by definition that C1=0, at ( = (. If ( = ( then ( = ( but because � EMBED Equation.2  ��� is not zero and C1=0, at ( = ( then � EMBED Equation.2  ���.  If � EMBED Equation.2  ��� then its derivative evaluated at ( is � EMBED Equation.2  ���. Combining all these facts together gives.  C0=0.

Equation 27

� EMBED Equation.2  ���

Rearranging equation 27:

Equation 28

� EMBED Equation.2  ���

Integrating both sides yields:

Equation 29

� EMBED Equation.2  ���

in which C=constant of integration and rearranging and let C=eC:

Equation 30

� EMBED Equation.2  ���

substituting equation 30 into equation 16 yields:

Equation 3� SEQ Equation \* ARABIC �
2
�

� EMBED Equation.2  ���

Due to conservation of Mass:

Equation 3� SEQ Equation \* ARABIC �
3
�

� EMBED Equation.2  ���

Solving for C by substituting equations 18 and 31 into equation 32 yields:

Equation � SEQ Equation \* ARABIC �
4
�3

� EMBED Equation.2  ���

reducing equation 33 gives:

Equation 34

� EMBED Equation.2  ���

Remembering that

Equation 35

� EMBED Equation.2  ���

if the function is continous and defined over the region defined by 

-( < ( <+( and recognizing that:

Equation 36

� EMBED Equation.2  ���

and recognizing that erf(() =1, then substituting equations 36 and 35 into 34 and reducing yields:

Equation 37

� EMBED Equation.2  ���

Therefor C=1 substituting this fact and equation 17 into equation 31 yields:

Equation 38

� EMBED Equation.2  ���

This equation is in fact a generalized solution for point source, source area and the general solution for the y-direction. For the condition of M=M(() and for the initial condition of C0((,0)=M (((-() in which (((-() represents the Dirac Delta function which has the properties of (((-()=( at |(|(l/2 and (((-()=0 everywhere else and:

Equation 39

� EMBED Equation.2  ���

remembering equation 32 then

Equation 40

� EMBED Equation.2  ���

Equations 39 and 40 initial conditions to:

C1((,0)=M for |(|(l/2 and C1((,0)=0 (<-l/2 and (>l/2

Since the mass is distributed over the distance l with a local value of M(() pertaining to the increment d(, the concentration resulting form the “spiked center” at point ( and time t is: 

Equation 41

� EMBED Equation.2  ���



Equation 42

� EMBED Equation.2  ���

Since M(() is equal to M in the interval of |(| < l/2, and solving for C1((,t) in equation 42: Assume 

Equation 43

� EMBED Equation.2  ���

and

Equation 44

� EMBED Equation.2  ���

Recomputing the limits of integration pertaining to p:

for

Equation 45

� EMBED Equation.2  ���

Equation 46

� EMBED Equation.2  ���

Substituting Equations 43 through 46 into 42 reveals:



Equation 47

� EMBED Equation.2  ���

Equation 46 may be rewritten in the form of 

Equation 48

� EMBED Equation.2  ���

Remembering Equation 36, equation 48 may be rewritten as

Equation 49

� EMBED Equation.2  ���

but by definition M=1. Substituting M=1 and equation 10 into equation 49 yields and adding in the decay rate:

Equation 50

� EMBED Equation.2  ���

This represent the total concentration at ( for all d( from the line source.  This represents only the concentration ad a function of x and t.  To obtain the concentration in the other directions.

Solving for C2:

Equation 8 is very similar to Equations 15.  Since the derivations leading to Equation 38 are the same, Equation 38 may be written as:

Equation 51

� EMBED Equation.2  ���

Remembering for the condition of M=M(() and for the initial condition of C0((,0)=M (((-() in which (((-() represents the Dirac Delta function which has the properties of (((-()=( at |(|(l/2 and (((-()=0 everywhere else and Equations 39 and 40 the initial conditions can be expressed as C2(y,t)=M for |y|( b/2 and C2(y,t)=0  y<-b/2  and y>b/2 employing similar reasoning as used in deriving Equation 41 and 42, Equation 42 may be written as:

Equation 52

� EMBED Equation.2  ���

Since M(() is equal to M in the interval of |y| < b/2, and solving for C2(y,t) in equation 52: Assume 

Equation 53

� EMBED Equation.2  ���

and

Equation 54

� EMBED Equation.2  ���

Recomputing the limits of integration pertaining to p:

for

Equation 55

� EMBED Equation.2  ���

Equation 56

� EMBED Equation.2  ���

Substituting Equations 53 through 56 into 52 reveals:

Equation 57

� EMBED Equation.2  ���



Using the same reasoning as was employed in the derivation of Equations 47 and 48, Assuming M=1 equation 57 maybe rewritten as 

Equation 58

� EMBED Equation.2  ���

Equation 38 is the point source solution for the Z direction.  Substituting in M=1 and that (=y and (=0 because it is a point source.



Equation 59

� EMBED Equation.2  ���

Now solve for the mass balance value of (. 

Equation 60

� EMBED Equation.2  ���

Where Rf is the retardation factor and ne is the effective porosity of the soil.

�Appendix B. Source Code Description



The following pages contain the source code for this project.  Below is a brief description of each of the attached files.



Params.h		Class declaration for data associated with the simulation. 	

			Used by all three methods.

Params.cpp 		Definitions of the methods in Params.h.

Instant.h		Subroutines that provide information on the analytical.

			result for use in SemiAdap.cpp and SemiSpec.cpp.

Instant.cpp		Definitions of the subroutines defined in Instant.h

SemiAdap.cpp	Source code for the computation of the concentration  

			using adaptive integration.

SemiSpec.cpp	Source code for the computation of the concentration  

			using spectral convolution.

FinDiff.cpp		Source code for the computation of the concentration

			using finite differences and the alternating direction 

			approach.
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