Exoplanets and the potential for life in the Universe

Outline of the talk

- Solar System Formation
- Exoplanets
 - Definition
 - Detection Methods
 - What we Found
- Modified Theory of Formation
- Properties Of Exoplanets
- ◆ What's The Point of all This?
- ◆ LIFEINTHEUNIVERSE
 - Habitability/Kepler/Life

Nebular Theory

"Frost line" Hydrogen-helium gas nebula Protosun Accreting rock-ice planetesimals Accreting rocky planetesimals

First Exoplanet

- First 1988 Bruce Campbell, G. A. H. Walker, and Stephenson Yang but Not Confirmed until 2003
- From Wikipedia
 - In early 1992, radio astronomers <u>Aleksander Wolszczan</u> and <u>Dale Frail</u> announced the discovery of two planets orbiting the <u>pulsar PSR 1257+12</u>.

 [6] This discovery was confirmed, and is generally considered to be the first definitive detection of exoplanets. These pulsar planets are believed to have formed from the unusual remnants of the <u>supernova</u> that produced the pulsar, in a second round of planet formation, or else to be the remaining rocky cores of <u>gas giants</u> that somehow survived the supernova and then decayed into their current orbits.

How Do We Find Them?

- RadialVelocity
- Pulsar Timing
- Transits
- GravitationalMicrolensing
- Direct Imaging
- Astrometry

Light curve

Doppler Technique

- Measuring a star's
 Doppler shift can tell
 us its motion toward
 and away from us.
- Current techniques
 can measure motions
 as small as 1 m/s
 (walking speed!).

© 2014 Pearson Education, Inc.

First Extrasolar Planet

a A periodic Doppler shift in the spectrum of the star 51 Pegasi shows the presence of a large planet with an orbital period of about 4 days. Dots are actual data points; bars through dots represent measurement uncertainty.

Doppler shifts of the star 51 Pegasi indirectly revealed a planet with 4-day orbital period.

This short period means that the planet has a small orbital distance.

This was the first extrasolar planet to be discovered around a Sun-like star (1995).

What can Doppler shifts tell us?

 Doppler shift data tell us about a planet's mass and the shape of its orbit.

How can changes in a star's brightness reveal the presence of planets?

Surface Temperature Map

 Measuring the change in infrared brightness during an eclipse enables us to map a planet's surface temperature.

© 2014 Pearson Education, Inc.

Figure 4: Combined eclipse and phase map of the hot Jupiter HD 189733b. Courtesy of Julien de Wit [40].

Also starting to get chemistry

- What We Get
 - Semi Major Axis
 - Eccentricity
 - Longitude of
 Periastron
 - Time Of Periastron
- ◆ What We Don't
 - Inclination (unless via transit method)
 - Longitude of the Ascending Node

Only M Sin(i) For Radial Velocity

Lower Limit Only

Also

Calculating density

 Using mass, determined using the Doppler technique, and size, determined using the transit technique, density can be calculated.

Some Properties Of the 1800 (and increasing weekly) Discovered Planets

How do extrasolar planets compare with planets in our solar system?

Following Plots From exoplanets.org

Orbits of Extrasolar Planets

- Most of the detected planets have orbits smaller than Jupiter's.
- Planets at greater distances are harder to detect with the Doppler technique.

What Are They Like? Paradigm

What We Found

This Can't Happen With The Conventional Theory Of Planet Formation

- ◆ So We Change It
- Planets MUST move when they form
- ◆ Type1Migration
 - Smaller planets moved by torques from disk
- ◆ Type 2 Migration
 - Bigger planets effect disk, move inward
 - Gravitational scattering

Planetary Migration

- A young planet's motion can create waves in a planetforming disk.
- Models show that matter in these waves can tug on a planet, causing its orbit to migrate inward.

Gap opening and planet migration Phil Armitage

So What's The Point?

- Are We Alone?
- We aren't the center of the universe
- We aren't the center of our galaxy
- ◆ We aren't the center of our solar sytem
- ◆ We aren't even the center of the Earth
- Star formation is ubiquitous
- Planet formation is ubiquitous
- We see H2O, NH3, CH4, and complex organic molecules all through space
- There's no reason to conclude our formation is unique
- BUT, planet formation and (probably) evolutionary processes are stochastic
- ◆ BUT There are ~10" stars in each of the ~ 10" galaxies in the observable universe
 - That's a lot of times to roll the dice

LIFE?

How significant are we in the scheme of things?

It's amusing that we take ourselves so seriously.

Planet Earth

The Holy Grail - Habitable Planets

Habitability

- We mean habitable by US!!!
- Suitable Star
 - F,G,M stars
 - Long Lives
 - Long Term Stability
 - High Metallicity
 - Energy to Warm The Planet need a moon
- Planet Characteristics
 - Rocky (water?)
 - Massive but not too massive
 - Low eccentricity
 - Slower rotation
 - Suitable Atmosphere
 - Small Axial wobble

Maybe we also

and a Jupiter

Lets Define Life

 Life is a self replicating chemical system capable of evolving such that its offspring might be better suited for survival

Ingredients for Life

- Life Requires Chemistry
 - · Bonding elements only no noble elements
 - Strong Bonds
 - Carbon, 4th most abundant element
 - · Silicon too weak, no complex silicon chains
 - Solvent
 - high liquid range in temperature
 - High heat capacity
 - High dielectric constant
 - High molar density
 - ◆ Water!!!!
 - Floats when ice
 - Second Hydrogen Flouride 1/100,000th as abundant as oxygen

Enter Kepler - kepler.nasa.gov

Kepler 22-B * Kepler.nasa.gov

- We may have found one
- ◆ Kepler 22-B
 - ◆ 2.5 x Earth Radius
 - ◆ 10-35 Earth Mass
 - ◆ Surface Temperature ~ 72F
 - ◆ Surface Gravity ~ 2-7 x Earth's
 - Either ice planet or watery Earth

How Likely 1s Life?

The Drake Equation

```
N=N_s f_s f_p n_e f_l f_i f_e F_L
```

N = number of communicating civilizations in our Galaxy right now

 N_s = number of stars in the galaxy (2x10¹¹)

 f_s = fraction of stars suitable for life (0.05-0.3) [1x10¹⁰ - 6x10¹¹]

 $f_p = \text{fraction of suitable stars with planets } (\sim 0.1)$ [1x10⁹ - 6x10¹⁰]

 n_e = average number of habitable planets or moons per solar system (0.01-0.5)

 $[1x10^7 - 3x10^9]$

 f_1 = fraction on which life develops (0.01 - 1.0) [1x10⁵ - 3x10⁹]

 $f_i = \text{fraction on which intelligence develops } (0.001-0.5)$ [100 - 1.5x10⁹]

 $f_c = \text{fraction which try to communicate } (\sim 0.5)$ [50 - 7.5x10⁸]

 F_L = fraction of the star's life during which communicative civilization lasts (1x10 $^{\circ}$ - 1x10 $^{\circ}$)

5x10-7 < N < 750 000

My Version Of The Drake Equation

THE DRAKE EQUATION

NUMBER OF COMMUNICATING CIVILIZATIONS IN OUR GALAXY

PROBABILITY THAT LIFE ON A PLANET BECOMES INTELLIGENT

N = R* fp ne f, f, f, LB

NUMBER OF LIFE-SUPPORTING PLANETS PER SOLAR SYSTEM AMOUNT OF BULLSHIT YOU'RE WILLING TO BUY FROM FRANK DRAKE

We See Evidence For Atmospheres On Exoplanets

So lets go see if we can see evidence for life

SO WHERE ARE WE?

We see

- Winds
- Carbon Dioxide
- Hot Spots
- ◆ More To Come

We want to see

Biosignatures In Spectra

- Water
- OZONE!!!!

But this is very hard, you are subtracting spectra during secondary eclipses looking for evidence of molecular absorption

We Aren't Where We Can See The Atmospheres On Other Earths

But we didn't know other planets existed 20 years ago

◆ Now we are finding several a month!!!

 We are characterizing the numbers of planets as we speak

 We are getting statistics for habitable planets in the Milky Way

◆ While we aren't there yet I firmly believe we will be in your lifetime

Unfortunately Kepler is dead and so is a purely exoplanetary atmospheric satellite mission

What's on the horizon?

Future Missions

- ◆ Tess Transiting Exoplanetary Survey Satellite (NASA)
 - ◆ 2017
 - ◆ 400 times sky coverage of Kepler
 - ◆ Transit survey
- ◆ CHEOPS (CHaracterising ExOPlanets Satellite) (ESA)
 - ◆ 2017 (University of Bern)
- ◆ PLATO Planetary Transits and Oscillations of stars (ESA)
 - ◆ 2024
 - ◆ Looking at 1 million stars

Keep your eyes peeled

- We're characterizing the statistics of exoplanets and potentially habitable planets
- ◆ We're taking rudimentary atmospheric spectra
- We're putting looking for ET on firm scientific footing

Thanks for your time