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Abstract

In this thesis, we discuss various aspects of the Dvali-Gabadadze-Porrati (DGP)

model in D-dimensions. Firstly, we generalize the DGP model, which consists of a

delta-function type 3-brane embedded in an infinite volume bulk-space by allowing

the 3-brane to have a finite thickness. We calculate the graviton propagator in the

harmonic gauge both inside and outside the brane and discuss its dependence on the

thickness of the brane. We obtain two infinite towers of massive modes and tachyonic

ghosts. In the thin-brane limit, we recover the four-dimensional Einstein gravity be-

havior of the graviton propagator which was found in the delta-function treatment.

We then examine the 4D worldvolume momentum dependence of the tensor struc-

ture. Secondly, we address the van Dam-Veltman-Zakharov (vDVZ) discontinuity

of the 5D DGP model which arises from the breakdown of the perturbative expan-

sion at linear order. Following a suggestion by Gabadadze [hep-th/0403161], we

implement a constrained perturbative expansion parametrized by brane gauge-like

parameters. We obtain the solution for the metric perturbations, explore the pa-

rameter space and show that the DGP solution exhibiting the vDVZ discontinuity

corresponds to a set of measure zero. Thirdly, we discuss the weak-field Schwarzschild

solution in the DGP model. By keeping up to second-order off-diagonal terms of the

metric ansatz, we arrive at a perturbative expansion which is valid both far from

and near the Schwarzschild radius. We calculate the lowest-order contribution ex-

plicitly and obtain the form of the metric both on the brane and in the bulk. As we

approach the Schwarzschild radius, the perturbative expansion yields the standard

four-dimensional Schwarzschild solution on the brane which is non-singular in the

decoupling limit. This non-singular behavior is similar to the Vainshtein solution in

massive gravity demonstrating the absence of the vDVZ discontinuity of the DGP

model.
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Chapter 1

Introduction and Summary

Dimensionality has long been considered by mankind since antiquity. Perhaps Pythago-

ras of Samos (569-500 B.C.) should be accredited with the earliest mathematical

treatment of the concept of dimensionality when he provided the proof which relates

the three sides of a right triangle through the famous equation which bears his name.

Aristotle (384-322 B.C.) a century later pondered the concept of dimensions and in

his work On Heaven wrote “The line has magnitude in one way, the plane in two ways,

and the solid in three ways, and beyond these there is no other magnitude because

the three are all”. This declaration of space being strictly limited to three spatial

dimensions was taken further when Ptolemy (85-165 A.D.), the last great Alexan-

drian astronomer, suggested a ‘proof’ of the non-existence of extra dimensions in his

work On Distance. Even Euclid (325-265 B.C.), the most prominent mathematician

of ancient Greece, neglected to even consider the possibility of higher dimensions in

his best known treatise on mathematics The Elements, which has been the center of

mathematical teaching for 2000 years and comprises what is now known as Euclidean

geometry.

On June 10, 1854, Bernhard Riemann presented a lecture on his habilitation,

the degree which would allow him to become a lecturer, entitled On the hypotheses
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that lie at the foundation of geometry. This lecture presented a new way of looking at

geometry which generalized Euclidean geometry to non-Euclidean geometry allowing

for any number of higher dimensions and for curved surfaces. Although Riemann

himself did not give much thought to the physical reality of extra dimensions, his

ideas planted the seed for serious inquiry into a realization of higher dimensions.

In 1905, Albert Einstein published his work on special relativity which shat-

tered the long standing Newtonian concepts of absolute time and space. The century

prior had seen the unification of electricity and magnetism via Maxwell’s equations

which predicted the propagation of electromagnetic waves (one example being that

of visible light) traveling at a constant speed c for all inertial reference frames. Us-

ing this in addition to the postulate that there exists only relative motion, Einstein

constructed this theory making use of the Lorentz transformations which relate two

inertial coordinate systems moving with different relative speeds. These transforma-

tions effectively mix measurements of location and time and thus paved the way for

treating space and time on equal footings. Hermann Minkowski furthered the mar-

riage of space and time into the concept of spacetime in 1909 by giving a geometrical

interpretation of special relativity. He realized that if he treated time as an imaginary

coordinate, then the Lorentz transformations can be thought of as rotations in this

four-dimensional spacetime. After Minkowski, Einstein finally completed the space-

time merger in 1915 when he introduced his General Theory of Relativity, a generally

covariant four-dimensional theory of gravity. Using Riemann’s geometric formalism

of higher dimensional spaces, Einstein constructed the field equations describing grav-

ity as the curvature of spacetime. This, consequently, brought Riemann’s theory of

higher dimensions and curved surfaces out of the academic realm of pure mathemat-

ics and gave it a physical realization. This general theory, which assumes complete

equivalence of a gravitational field and the corresponding acceleration of the reference

frame, unifies the special theory of relativity with Newtonian gravitation.
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In the years shortly after the onset of Einstein’s general theory of relativity,

physics embodied two different field theories describing the two known fundamental

forces of Nature, electromagnetism and gravitation. Using the mathematical frame-

work of general relativity, Theodor Kaluza and Oskar Klein attempted to unify the

two forces into a more fundamental description. In 1919, Kaluza [1] showed that by

generalizing the Einstein field equations in vacua to five dimensions and by making

an appropriate metric ansatz, one could recover both the 4D Einstein field equations

describing gravity and Maxwell’s equations of electricity and magnetism. Besides the

obvious problem of having to hypothesize an undetected spatial dimension, Kaluza

had to assume that all metric components were independent of this extra dimension.

Expanding on the original work of Kaluza, Klein [2] provided a resolution to the

conflict of the metric’s independence of the extra spatial dimension. Klein assumed

that the extra dimension was compactified in such a way that at every point in 4D

spacetime, there exists a small circle on the order of the Planck length. This allows

for a Fourier expansion of the periodic extra dimension and yields a tower of Kaluza-

Klein (KK) massive modes. The energy levels of these massive modes are inversely

proportional to the compactification radius, thus, probing small compactified extra

dimensions requires huge amounts of energy which are not accessible in the conven-

tional low energy experiments (for compactification radii on the order of the Planck

scale). In the low energy regime, and thus a large distance regime, physics of the KK

theory appears four-dimensional. It is not until small distances are probed, requiring

large energies, that physics becomes that of a five-dimensional theory. Conceptually,

the example of a garden hose is often used for illustrative purposes. From a distance,

a garden hose appears as a one-dimensional object and not until closer examination

is the two-dimensional surface revealed.

Although not accepted as a correct fundamental theory to describe Nature,

the KK mechanism of adding extra dimensions has been actively studied during the
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last several years. The advent of string theory as a possible candidate to offer a con-

sistent quantum description of gravity has been primarily responsible for fueling this

activity in the research of extra dimensional scenarios as superstring theory has the

strict requirement of residing in a 10D spacetime. Traditionally, the six extra spatial

dimensions predicted by string theory have been treated as compactified objects, as

are the dimensions of the Kaluza-Klein theory. The discovery of D(irichlet)-branes as

fundamental extended objects has provided a new possible discription of extra spa-

tial dimensions and has given rise to several different braneworld scenarios where the

extra dimensions are large. These braneworld scenarios describe a three dimensional

dynamical hypersurface, a 3-brane for the sake of brevity, embedded in a higher di-

mensional bulk. The open strings, which are the Standard Model (SM) particles, are

confined to the brane, however, the closed strings corresponding to spin-2 gravitons

have no such boundary requirements and are free to propagate on the brane and in

the bulk.

In order to obtain a realistic braneworld model which agrees with astronom-

ical data, one must obtain 4D gravity on the brane. The Newtonian distance de-

pendence of gravitational interactions has been well tested from the submillimeter

(.2mm) regime up to the cosmological horizon (1026cm), which corresponds to about

1% of the size of the observable universe [56]. Any deviation from a Newtonian

potential is strictly prohibited within this distance regime, however, beyond the cos-

mological horizon there is nothing constraining an alternative theory from predicting

a departure from that of the 4D general relativity.

Currently, there are three known mechanisms for obtaining the 4D laws of

gravity on a brane residing in large extra dimensions. These different braneworld sce-

narios residing in a higher dimensional bulk have successfully explained the weakness

of the gravitational force. The first is to combine the braneworld idea with a KK

compactification of (D − 4)-dimensions with large compactification radius. This sce-
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nario was proposed in 1998 by Arkani-Hamed, Dimopoulos, and Dvali (ADD) [3, 4, 5]

and offers a way to eliminate the Higgs mass hierarchy problem as the fundamental

plank mass scale is lowered to that of the order of the weak scale. A second known

way was discovered by Randall and Sundrum [6, 7] in 1999. The RSII model [7]

involves a single brane embedded in a 5 dimensional bulk-space with a negative cos-

mological constant and non-vanishing brane tension. By fine-tuning the values of the

bulk cosmological constant and the brane tension, a solution for the metric can be

obtained which exhibits a warped bulk-space. Although the bulk coordinate is not

compactified and runs in an infinite interval, the physical size of the extra dimension

is finite and the warp factor provides for a localization of gravity. The effect of these

scenarios is a high-energy modification of Newton’s Law of gravity due to the tower

of Kaluza-Klein modes.

In this thesis, we will discuss the third scenario being that of Brane Induced

Gravity, in particular, the model proposed in 2000 by Dvali, Gabadadze, and Porrati

(DGP) [8, 9] which describes a 3-brane residing in an infinite-volume extra space.

When the extra dimensions are of infinite volume, light Kaluza-Klein modes may

dominate even at low energies [8, 9, 10], therefore offering an attractive alternative

to dark energy for solving the cosmological constant problem [11, 12]. Thus, unlike

with finite-volume extra space, Newton’s Law is modified at astronomically large

distances [13, 14, 15, 16, 17, 18, 19, 20, 21].1

Dvali and Gabadadze [9] showed that this is not the case if the infinite space

in which the brane lives has dimension D > 5. They studied a three-brane of the

δ-function type and showed that the graviton propagator has a four-dimensional mo-

mentum dependence on the brane even at low energies. This feature is not expected

to persist if the brane is of finite thickness (“fat”) in the transverse directions for phe-

1See [44] for a slightly different treatment which yields a 4D tensor structure at astronomical
distances.
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nomenologically relevant values of the momentum. This was discussed qualitatively

in [9]. For low energies (large distances), the fat brane treatment should lead to a

higher-dimensional behavior of the graviton propagator [22, 23, 24].

The DGP model of a 3-brane residing in a 5D bulk of vanishing cosmological

constant [8] is a ghost-free, general covariant theory where the 5D graviton mimics a

4D massive graviton on the brane. The model appears to be plagued by a van Dam-

Veltman-Zakharov (vDVZ) discontinuity [30, 31], as does 4D Pauli-Fierz massive

gravity [45] at linear order, where one does not obtain agreement with Einstein’s

General Theory of Relativity in the vanishing mass limit of the graviton, and has

attracted much attention [33, 34, 35, 36, 37, 38, 39, 40, 41]. Vainstein [32] provided a

solution to the apparent discontinuity for the 4D Pauli-Fierz model in the case of a

point source by suggesting that the discrepancy arises from the linear approximation

to the full field equations which has a limited range of validity. This second solution

reduced to the Schwarzschild solution in the zero graviton mass limit demonstrating

the absence of the vDVZ discontinuity in this spherically symmetric case. 2 Applying

a similar procedure to the DGP model is not straightforward, because the non-linear

field equations are too complicated to solve even in the spherically symmetric case

of a point source. In refs.[37], solutions for the DGP model were found interpolating

between regimes far from and near the Schwarzschild radius by keeping higher-order

terms in the perturbative expansion. It was thus shown that in the decoupling limit,

one recovers the standard four-dimensional, weak-field Schwarzschild metric.

As has been recently argued in [46, 47] for the specific case of D = 5, the

breakdown of the perturbative expansion at linear order is an artifact of the weak-field

expansion itself and can be healed by adopting a constrained perturbative expansion.

Thus, instead of the incorporation of higher-order terms into the linearized treatment,

the theory is regulated by a modification of the linearized theory itself. After fixing

2See [43] for problems associated with Vainstein’s approach.
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the gauge in the bulk, a residual four-dimensional gauge invariance remains on the

brane. The graviton propagator is then rendered invertible by the addition of a term

in the action which amounts to a gauge-fixing term in four-dimensional gravity.

This dissertation is organized as follows.

In Chapter 2, we begin by introducing the salient generic features of Brane

Induced Gravity in an infinite-volume bulk-space. By limiting our analysis to a

simplest setup of keeping only lowest-order derivative terms for a Minkowski bulk

and fine tuning the brane cosmological constant to exactly cancel the brane tension,

we arive at the model of Dvali-Gabadadze-Porrati (DGP). The initial work in [8, 9]

provides much of the motivation for the research presented in this thesis and will thus

be thoroughly re-examined here. In section 2.1, we review the original treatment of

the DGP model and arrive at the solution for the graviton propagator in D = 5 [8]

and D > 5 [9] for a delta-function type brane. For the case of D > 5, the solution

for the graviton propagator was found to have a 4D tensor structure and distance

dependence on the brane. This solution was found in a singular manner, as the

Green function is discontinuous at the location of the brane, and suggests that a

regularizational scheme should be adopted. To regulate the theory, one can either

keep higher-dimensional derivative terms obtained from next order contributions to

the bulk, which in the simplest setup are neglected, or alternatively one can allow

for a brane of finite thickness (making the brane “fat”). This finite thickness brane

can arise if the brane is treated as a smooth soliton in the bulk or by transverse

fluctuations of the brane into the bulk-space giving the brane an effective thickness.

In the Chapter 3, we regulate the theory by choosing the latter. For the case of D = 5,

the solution for the metric perturbations was found to coincide with that of tensor-

scalar gravity. This solution has a 4D distance dependence in the near regime crossing

over to a 5D distance dependence in the far regime. However, when one examines the

full tensor structure, one finds that the solution for the metric perturbations appear
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to suffer from a van Dam-Veltman-Zakharov (vDVZ) discontinuity similar to that

of the Pauli-Fierz model of massive gravity at linear order. In the decoupling limit,

the solution for the metric perturbations does not reduce to that of a 4D behavior

signalling disagreement with known astronomical data. This discontinuity is due to

the breakdown of the perturbative expansion due to the weak field.

In Chapter 3, a brane-bulk action is considered which is similar to the action of

the DGP model for the delta-function type [9] but generalized to allow for a brane of

finite thickness with extent into the infinite volume bulk-space. By linearizing gravity

in the harmonic gauge, we arrive at an explicit expression for the graviton propagator

in section 3.2. First, we obtain the propagator for the trace of the metric field over

the transverse directions. The trace is a scalar field from the four-dimensional brane

point of view. It is then found that this scalar contributes to the four-dimensional

graviton propagator as a source, in addition to the matter fields. This complicates the

tensor structure of the graviton propagator which becomes momentum dependent. We

explicitly obtain the solution for the graviton propagator and proceed by analyzing it’s

pole structure and momentum dependence. In section 3.3, we find two infinite towers

of massive modes and tachyonic ghosts. It is found that in the thin-brane limit, the

infinite towers merge into a continuous spectra. The terms that give rise to the poles

become vanishingly small and we recover four-dimensional Einstein gravity on the

brane; the solution for the graviton propagator reduces to that of the delta-function

type setup. It is found that the pole corresponding to the massless propagator of

Einstein gravity is independent of the bulk coordinates on the brane. In section 3.4,

the momentum dependence of the propagator is then analyzed and we demonstate

how the graviton propagator changes from one of 4D behavior in both the tensor

structure and distance dependence to that of D dimensional behavior.

In Chapter 4, we address the vDVZ discontinuity of 4D massive gravity which

arises in the DGP model for the unique case of D = 5 dimensions. In section 4.1, we
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rederive the Pauli-Fierz model of massive gravity in the context of the treatment of

the latter part of this chapter which is described as follows. We add to the generally

covariant 4D Einstein-Hilbert action an additional linear action contribution. This

additional action contribution is left completely general and is written in terms of

free parameters which consequently exhaust all possible combinations of the metric

perturbations which yield local field contributions. By solving the linearized field

equations and demanding the theory be free of tachyonic and ghost-like states, the

values of the free parameters become severely constrained and hence, we arrive at

the Pauli-Fierz model of massive gravity [42]. As has been recently argued in [46, 47]

for the 5D DGP model, the breakdown of the perturbative expansion at linear order

is an artifact of the weak-field expansion itself and can be healed by adopting a

constrained perturbative expansion. In section 4.2, we present a generalized procedure

of [46] with the intent of regulating the linearized theory itself without the inclusion

of higher order field contributions. As was done in the previous section, we add an

additional worldvolume action contribution to the model which is written in terms of

free brane parameters. Accompanying this new linear brane term, we also include an

additional bulk contribution also written in terms of free parameters. The inclusion

of these additional terms explicitly break the bulk and brane gauge invariance. In the

decoupling limit and in the absence of the brane, these additional terms reduce to

mere gauge-fixing conditions. Away from these limits, the additional terms regulate

the theory and modify the linear field equations. After expanding around a Minkowski

background and obtaining the field equations, we obtain the solution for the metric

perturbations. We find a set of constraint equations which limits the domain of

the bulk parameters. We find that the solution has the expected 4D momentum-

dependent crossover behavior and is independent of the brane and bulk parameters

in the small and large 4D momentum regimes. We then examine the pole structure

by exploring the parameter space and identify the region which yields non-tachyonic
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type resonances.

In Chapter 5, we readdress the vDVZ discontinuity of the DGP model in the

context of a massive point source. The vDVZ discontinuity of the Pauli-Fierz model

was addressed by Vainstein [32] who provided a solution to the apparent discontinuity,

in the case of a massive point source, by suggesting that the discrepancy arises from

the linear approximation to the full field equations which have a limited range of

validity. In section 5.1, we review the salient features of [32]. By choosing a spherically

symmetric metric ansatz, expanding the field equations in the small graviton mass

regime and keeping up to second-order terms, we obtain the Vainstain solution. This

solution is well-behaved in the vanishing graviton mass limit and corresponds to that

of 4D massless gravity . In section 5.2, we follow a similar approach for the 5D DGP

model for the case of a massive point source. We choose a spherically symmetric

metric ansatz with the inclusion of an off-diagonal metric contribution and obtain

the DGP field equations. We expand around a flat background keeping all lowest

order field contributions plus second-order contributions in the off-diagonal metric

term. We obtain a set of coupled non-linear field equations which can be decoupled

and solved and find that the solution is valid in the near and far regime. In the far

regime, the solution is that which emerges from the linear perturbative expansion . In

the near regime, the second-order contribution of the off-diagonal metric field yields

a non-negligible contribution and we obtain a solution which smoothly transitions to

the 4D Einstein solution thus showing an absence of the vDVZ discontinuity when

the correct expansion is performed.

Finally, in Chapter 6 we conclude the thesis. We summarize our main findings

and discuss some of the attractive features of the DGP model.
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Chapter 2

Brane Induced Gravity

We begin by constructing the general form of a bulk action describing a non-compactified

infinite-volume, D-dimensional extra space which is asymptotically flat at infinity

[8, 9]. Suppose a general D-dimensional bulk-space action of the form

Sbulk =

∫
dDX

√
−G L(GAB,RABCD, Φ) (2.1)

where capital Latin indicies run over D-dimensional spacetime (A, B, ... = 0, 1, ..., D).

GAB is the D-dimensional metric which gives rises to a D-dimensional Riemann tensor

RABCD and G = detGAB. Φ denotes collectively all other bulk fields.

It should be noted that the volume of the bulk-space of this asymptotically

flat model is truly infinite

VD−4 =

∫
dD−4y

√
−G →∞ (2.2)

which differs from that of the volume of the non-compactified bulk of the 5D Randall-

Sundrum (RSII) model [7] where a non-zero, constant vacuum energy density warps

the extra space. Although non-compactified, the physical size of the extra dimension
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in the RS model is finite due to the warp factor which, consequently, was discovered

to allow for a localization of gravity on the 3-brane. The Randall-Sundrum model

allows for a modification of the Newtonian potential between two sources on the brane

to be of the form

VRS(r) = −GmM

r

(
1 +

(2L)2

r2

)
(2.3)

where L is the effective size of the warped extra dimension. From (2.3), it is evident

that the second term becomes dominant in the near regime, when r . L; at large r,

the first term dominates and we recover 4D gravity.

This behavior of the RS model drastically differs from that of the DGP model

of a Minkowski 3-brane embedded in a flat, infinite-volume bulk. As will be presented,

the DGP model will provide a long range modification of Einstein gravity on the

brane where the distance dependence of the potential transitions from that of a 4D

Newtonian potential in the near regime to that of a higher dimensional theory in the

far regime.

In it’s present form, (2.1) is invariant under D-dimensional reparametrizations

and translations. We wish to embed a 3-brane in the bulk which will break this D-

dimensional reparametrizational and translational invariance. Throughout this work,

the D-dimensional coordinates will be split as

XA = (xµ, ym) (2.4)

where Greek indicies run over the four-dimensional (4D) worldvolume coordinates

(µ, ν, ... = 0, 1, 2, 3) and lowercase latin indicies run over the bulk coordinates (m, n, ... =

4, 5, ..., D) perpendicular to the brane.

To (2.1) we wish to add additional action contributions which describe an em-

bedded brane residing in the bulk-space. The 3-brane is allowed to contain Standard
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Model (SM) matter fields localized on the brane worldvolume. This is consistent with

the String theory description which requires open strings, the spin-(1
2
, 1) SM particles,

to be confined to the brane dictated by Dirichlet boundary conditions. Conversely,

closed strings representing spin-2 gravitons have no such boundary conditions and

are free to propagate both in the bulk and on the brane.

The Dirac-Nambu-Goto action and 4D localized matter field action takes the

form

S̃brane = −T

∫
d4x
√
−g +

∫
d4x
√
−g L(φ) (2.5)

where the coefficient of the Dirac-Nambu-Goto action, T , is the brane tension. L(φ)

is the four-dimensional Lagrangian density which is a function of the 4D fields φ. The

tensor gµν is the induced metric on the brane gµν = ∂µX
A∂νX

BGAB whose precise

form is dictated by the yet unspecified choice of brane coordinates.

Here we neglect brane fluctuations and the brane is taken to be of the delta-

function type, a brane of zero width in the transverse directions. This treatment will

later be generalized to allow for a brane of finite thickness. For the delta-function

type brane, we choose the location of the brane to be at the origin of our coordinate

system, ym = 0. For the case of 5D, we impose Z2 symmetry across the brane such

that y → −y around y=0. For this choice of coordinates, the induced metric takes

the form

gµν(x
α) = δA

µ δB
ν GAB(xα, 0) (2.6)

At this point, the total action which has been presented, Scl = Sbulk+S̃brane,

is void of a 4D Ricci scalar on the brane. Upon solving the equations of motion which

arise from the above actions, one would obtain a force law describing that of bulk

gravity which scales as F ∼ 1/rD−2 which would contradict gravitational observations.

The action Scl describes a 3-brane embedded in a bulk at classical level. Ad-

ditional 4D action contributions, if not already present at the classical level, would
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be generated in a full quantum theory on the brane worldvolume due to the quantum

loops of the bulk gravitons interacting with the SM particles residing on the brane.

These additional terms should preserve 4D reparameterization invariance which will

consequently preserve 4D gauge invariance along the brane worldvolume. To see the

generation of these 4D terms explicitly, we note that the localized stress-energy tensor

will take the form

TAB(xα, ym) = δµ
Aδν

B Tµν(x
α) δD−4(ym) (2.7)

for the delta-function type brane. The interaction Lagrangian of this localized mat-

ter source interacting with the D-dimensional metric fluctuations hAB(xα, ym) =

GAB(xα, ym)− ηAB takes the following form

Lint =

∫
dD−4y hAB(xα, ym)TAB = hµν(xα, 0)Tµν (2.8)

where we used (2.7). The 4D metric fluctuations gµν = ηµν +hµν are defined by (2.6).

Due to this interaction of the bulk gravitons with the worldvolume stress-energy

tensor, a 4D kinetic term can be generated on the brane. The one-loop diagram

containing massive scalars and fermions, induce an additional 4D action [53, 54, 55]

in the low energy action of the form

∼
∫

d4xdD−4yδD−4(ym)
√
−gR(4) (2.9)

In addition to this 4D Einstein-Hilbert term, a series in powers of the 4D Ricci scalar

R(4) is generated due to higher-order quantum loop corrections. With this being said,

the induced action takes the form

Sind = M
2
∫

d4x
√
−g
[
Λ +R(4) +O(R(4))2 + ...

]
(2.10)
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where the coefficient M
2

has units of mass2. Λ is the induced 4D cosmological con-

stant and R(4) is the 4D Ricci scalar generated by the 4D induced metric tensor

gµν . The higher-order Ricci scalar terms are suppressed by powers of M , which for

phenomenological reasons should be on the order of the 4D Planck mass scale

M ∼ MPL ' 1019GeV (2.11)

and will be treated as equal throughout this examination. Combining the induced

quantum correction terms to the induced classical action, Scl, we can write the total

worldvolume brane action as

Sbrane = S̃brane + Sind

= −T

∫
d4x
√
−g + M

2
∫

d4x
√
−g
[
R(4) +O(R(4))2 + ...

]
(2.12)

where T = T − ΛM
2

is the renormalized brane tension due to the 4D cosmological

constant. Throughout this present work, we will be interested in solving the field

equations for an asymptotically flat 4D Minkowski brane, one where T = 0. For the

special case of a D = 5 Minkowski bulk, a non-zero positive tension brane inflates

[50, 51, 52]. In order to avoid this cosmic inflation and study an asymptotically flat

brane, we fine tune the cosmological constant to yield T = 0.

2.1 The DGP Model

In the previous subsection, we discussed some of the salient features of a general

induced braneworld model describing a tensionless, worldvolume brane embedded in

an asymptotically flat bulk. In this subsection, we review the pioneering work of
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Dvali-Gabadadze and Porrati [8, 9]. Following [8, 9] closely, we limit our examination

to that of the simplest setup; that of the bulk Lagrangian consisting of only a D-

dimensional Ricci scalar. In the absence of a brane, this D-dimensional Einstein-

Hilbert action would give rise to D-dimensional Einstein field equations describing

higher-dimensional tensor gravity. We further limit our attention by keeping only

the most dominant worldvolume contribution of (2.10) for the case of the fine-tuned

brane (T = 0). This setup is that of the DGP model which includes only the lowest

dimensional derivative action contributions in the bulk and on the brane.

To first-order in the Ricci scalars, we have a 3-brane on the boundary of a

D-dimensional bulk-space Σ described by the action

SDGP = MD−2

∫
Σ

d4xdD−4y
√
−G R(D) + M

2
∫

∂Σ

d4x
√
−g R(4) + SM (2.13)

where GAB is the D-dimensional metric which generates the D-dimensional Ricci

scalar R(D), whereas R(4) is generated by the four-dimensional metric gµν which is

the induced metric on the brane

gµν(x
α) = δA

µ δB
ν GAB(xα, 0) (2.14)

As was stated in the previous subsection, capital Latin indices run over D-

dimensional space-time (A, B = 0, 1, 2, ..., D), Greek indices run over the four-dimensional

brane worldvolume spanned by coordinates xµ (µ = 0, 1, 2, 3) and lowercase Latin in-

dices run over the extra space spanned by ym (m = 4, 5, ..., D). SM is the unspecified

matter action.

The coefficient M is the D-dimensional Plank mass. The mass scale M is the

4D Plank mass and is related to the four-dimensional Newton through the relation
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GN = 1/8πM
2
. For the case of the braneworld scenarios residing in a finite-volume

bulk, the D-dimensional Plank mass is intimately connected to the 4D Plank mass

by the relation

M
2

= MD−2 VD−4 (2.15)

For the infinite-volume bulk scenario, M can in general depend on M , but here they

will be treated as independent scales.

We wish to study the effects of the brane induced 4D Einstein-Hilbert term on

the Minkowski bulk for a delta-function type brane. Applying Hamilton’s principle

of setting the variation of (2.13) with respect to the tensor field equal to zero, one

arrives at the DGP field equations, which are given by

MD−2G
(D)
AB (xα, ym) + M

2
G(4)

µν (xα) δµ
Aδν

BδD−4(ym) = Tµν(x
α)δµ

Aδν
BδD−4(ym) (2.16)

where G
(D)
AB (G

(4)
µν ) is the D-dimensional (4D) Einstein tensor. G

(4)
µν only has brane

worldvolume components of the metric tensor. As was previously stated in (2.7), we

have chosen the matter source to be described by a stress-energy tensor Tµν whose

transverse components vanish (Tmn = Tµn = 0).

Upon examination of (2.16), we note that in the decoupling limit, limM→0, we

recover the 4D Einstein field equations on the brane given by

M
2
G(4)

µν (xα) = Tµν(x
α) (2.17)

Conversely, in the limit of a vanishing brane contribution, limM→0, we obtain purely

D-dimensional Einstein field equations with a brane matter source.

We are interested in solving the DGP field equations for metric perturbations

residing in a Minkowski background. Throughout this treatment we will choose a

mostly negative Minkowski metric tensor, ηAB = diag[+−−...−]. Expanding around
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this flat background,

GAB = ηAB + hAB (2.18)

we arrive at the first-order field equations. Due to the 4D reparameterizational in-

variance, the field equations are instructively split into µν, µn, and nm components.

The transverse (nm) components are

2∂A∂nhAn − ∂n∂
nhA

A − ∂A∂Ahn
n = (D − 4)(∂C∂DhCD − ∂C∂ChD

D) (2.19)

whereas the mixed (µn) components are

∂A∂Ahµn = ∂µ∂
AhAn + ∂n∂

AhAµ − ∂µ∂nh
A
A (2.20)

Finally, the brane worldvolume (µν) components imply

MD−2(∂µ∂
AhνA + ∂ν∂

AhµA − ∂A∂Ahµν − ∂µ∂νh
A
A − ηµν

(
∂A∂BhAB − ∂B∂BhA

A

)
)

+M
2
δD−4(ym) (∂µ∂

αhνα + ∂ν∂
αhµα − ∂α∂αhµν − ∂µ∂νh

α
α − ηµν

(
∂α∂βhαβ − ∂α∂αhβ

β

)
)

= Tµν(x
α)δD−4(y) (2.21)

Since we are expanding around a Minkowski background, indices are raised and low-

ered by the flat metric tensor ηAB.

Although D-dimensional reparameterizational invariance is broken at the lo-

cation of the brane, the bulk remains invariant. This implies a D-dimensional gauge

invariance in the bulk and the need for D-dimensional gauge fixing. To solve the field

equations, we shall choose the harmonic gauge,

∂AhAB =
1

2
∂BhA

A . (2.22)
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Using this harmonic gauge, we obtain from eqs. (2.19) and (2.20), respectively,

(6−D)∂A∂Ahn
n = (D − 4)∂A∂Ahµ

µ

∂A∂Ahµn = 0 (2.23)

which yields the perturbative relations

hµn = 0 (2.24)

hn
n =

(D − 4)

(6−D)
hα

α (2.25)

Using (2.24) and (2.25), we can rearrange (2.21) into the form

{
Tµν −

1

3
ηµνT

}
δD−4(y) =

(D − 4)

(6−D)
M

2
δD−4(y)∂µ∂νh

α
α

−
[
MD−2∂A∂A + M

2
δD−4(y)∂µ∂

µ
] [

hµν +
(D − 5)

3(6−D)
ηµνh

α
α

]
(2.26)

where we’ve written T = Tα
α . Taking the trace of (2.26), we arrive at an equation for

the scalar propagator given by the the equation

TδD−4(y) =
(D − 2)

(6−D)

[
MD−2∂A∂A − 2(D − 5)

(D − 2)
M

2
δD−4(y)∂µ∂

µ

]
hα

α (2.27)

To solve this equation, we’ll Fourier transform the worldvolume coordinates xα

hµν(x, y) =

∫
d4p

(2π)4
eip·xh̃µν(p, y) (2.28)

where for brevity we’ve dropped the coordinate indicies. Fourier transformed quan-

titites will be designated by tildes, hµν → h̃µν .
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After again rearranging, the equations for the metric perturbations take the

form

−
[
MD−2(p2 −�N) + M

2
p2δD−4(y)

] [
h̃µν +

(D − 2)

3(6−D)

(
(D − 5)

(D − 2)
ηµν −

pµpν

p2

)
h̃α

α

]
=

{
T̃µν −

1

3

(
ηµν −

pµpν

p2

)
T̃

}
δD−4(y)

(2.29)

where the Fourier transformed D-dimensional d’Alembertian is ˜∂A∂A = p2 − ∂n∂
n =

p2−�N , �N is the Laplacian of the (D−4)-dimensional transverse space. The scalar

propagator obeys the Fourier transformed trace equation

[
MD−2(p2 −�N)− 2(D − 5)

(D − 2)
M

2
p2δD−4(y)

]
h̃α

α =
(6−D)

(D − 2)
T̃ δD−4(y) (2.30)

We have written the Fourier transformed equations in terms of the Euclidean

momentum

p2 = −pµp
µ = −p2

0 + p2
1 + p2

2 + p2
3 = p2

4 + p2
1 + p2

2 + p2
3 (2.31)

It is instructive to rewrite the expression in eq.(2.29) into the following form

−
[
MD−2(p2 −�N) + M

2
p2δD−4(y)

]
h̃µν(p, y) =

{
T̃µν −

1

2
ηµνT̃

}
δD−4(y)

+
(D − 4)

2(6−D)
ηµνM

D−2(p2 −�N)h̃α
α(p, y) − (D − 4)

(6−D)
M

2
pµpνδ

D−4(y) h̃α
α(p, y)

(2.32)

Upon careful examination of the above equation, it should be noted that the first

term on the right hand side has the correct tensor structure of 4D Einstein gravity.

If the first line of eq.(2.32) comprised the entire equation, one would simply arrive at
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a solution for a massless or massive 4D propagator depending on the choice of spread

function (a delta-function type brane or a brane of finite thickness), for any choice

of dimensions. This, however, is not quite the case as there remains two additonal

terms on the second line of eq.(2.32).

Eq.(2.32) determines the behavior of the metric perturbations, h̃µν , which are

gauge dependent quantities and vary under the gauge transformation

hµν → hµν + ∂µξν + ∂νξµ (2.33)

By making an alternative gauge choice to that of (2.22), one would arrive at a slight

variant of (2.32). Note that the convolution of the metric tensor with a conserved

stress-energy tensor T̃
′µν yields a gauge invariant quantity.

hµνT
′µν → hµνT

′µν + ∂µξνT
′µν + ∂νξµT

′µν = hµνT
′µν (2.34)

where we used the fact that

pµpνT̃
′µν = 0 (2.35)

in Fourier space at tree level.

Convoluting eq.(2.32) with this conserved stress-energy tensor T̃
′µν yields the

gauge invariant equation

−
[
MD−2(p2 −�N) + M

2
p2δD−4(y)

]
h̃µνT̃

′µν

=

{
T̃µνT̃

′µν − 1

2
T̃ T̃ ′

}
δD−4(y) +

(D − 4)

2(6−D)
MD−2(p2 −�N)h̃α

αT̃ ′

(2.36)

On comparison with eq.(2.32), we see that the pµpν term does not remain in the gauge

invariant expression and therefore does not contribute at tree level. In addition to
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the correct combination of the stress-energy tensor which yields 4D Einstein gravity

{
T̃µνT̃

′µν − 1

2
T̃ T̃ ′

}
(2.37)

there remains one additional term on the r.h.s. of the above equation due to the

trace of the metric perturbations hα
α. As expected, this term vanishes when D = 4

recovering the expected 4D Einstein gravity for the graviton propagator. When

D 6= 4, the additional trace contribution is non-zero and is of the form

MD−2(p2 −�N)h̃α
αT̃ ′ (2.38)

This term effectively acts as an additional source for the graviton propagator hµνT
µν

and gives rise to an additional scalar exchange yielding 4D tensor-scalar gravity.

2.2 Solution for the Graviton and Scalar Propaga-

tors

We now proceed with obtaining the solution for the graviton and scalar propagators.

Upon examining eqs.(2.29, 2.30), it is evident the solutions can be obtained in terms

of a Green function. In addition to yielding the values for the graviton propagator,

the solution to the Green function equation corresponds to the exchange of a scalar

particle in a 4D world-volume theory and will allow us to calculate the Newtonian

potential on the brane.

The Green function needed to solve (2.29, 2.30) is of the form

[
MD−2(p2 −�N) + γM

2
p2δD−4(y)

]
G̃(p, y) = δD−4(y) (2.39)
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where γ is a c-number and will take on the value of 1 or −2(D − 5)/(D − 2). To

examine the behavior of the 4D distance dependence of the potential, we’ll set γ = 1

which corresponds to the Green function behavior derivable from a scalar action [8];

the value of γ = −2(D − 5)/(D − 2) becomes important in the tensor analysis. The

Fourier transformed Green function G̃(p, y) is given by the relation

G(x, y) =

∫
d4p

(2π)4
eip·xG̃(p, y) (2.40)

Once the value of the Green function is obtained, the distance dependence of

the interactions is found from a calculation of this potential which is given by [8, 9]

V (r) =

∫
G(t, xi, y = 0) dt (2.41)

where r =
√

x2
1 + x2

2 + x2
3 is the world-volume distance.

To solve eq.(2.39), we choose a product solution of the form

G̃(p, y) = B̃(p)D̃(p, y) (2.42)

where D̃(p, y) is defined by

(p2 −�N)D̃(p, y) = δD−4(y) (2.43)

This decomposition yields a solution for the Green function of the form

G̃(p, y) =
D̃(p, y)

MD−2 + γM
2
p2D̃(p, 0)

(2.44)

For the case of D > 5, the function D̃(p, y), as defined by (2.43), diverges on the brane,

at y = 0, in this delta-function type brane treatment. In this case, one has a product
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of two singular functions in (2.39) and (2.42). One should work with the regularized

expression G̃(p, y) = limε→0 B̃(p)D̃(p, y+ε); a careful analysis with this regularization

shows that the work presented in this section with these singular functions is valid

[9]. An alternative to the aforementioned regularization scheme would be to either

keep higher-dimensional derivative terms obtained from the next order contribution

to the bulk action (2.1) or to regulate the theory by giving the brane a finite thickness

in the transverse direction. In the next chapter we regulate the theory by doing the

latter.

The Green function for the delta-function brane in 5 dimensions is well behaved

at y = 0. Due to this contrasting behavior to the case of D > 5, we will proceed

to examine the cases D = 5 and D > 5 separately from this point forward. In

the following subsections, we finally present the solutions for the graviton and scalar

propagators and arrive at the value of the potential on the brane.

2.2.1 DGP in D = 5

For the unique case of D = 5, the function D̃(p, y) in (2.43) is well-behaved on the

brane. The solution to (2.39) for the Green function is

G̃(p, y) =
1

M
2

e−py

(γp2 + 2mbp)
(2.45)

where we’ve imposed Z2 symmetry across the brane which effectively places the brane

at the boundary of the bulk-space and have defined

mb =
M3

M
2 =

1

rb

(2.46)

suggestively hinting at a graviton mass. Here we’ve choosen the positive root of the

Euclidean momentum square p ≡ ±
√

p2. It should be noted that due to this square
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root in the Green function, the solution is multi-valued; the choice of sign dictates

the particular branch of the theory. At this point we will ignore such subtleties but

will return to this in Chapter 4 when we examine the pole structure of the graviton

propagator.

Taking the inverse Fourier transform and using eq.(2.41), we arrive at a value

for the potential on the brane given by [8]

V (r) =
1

4π2M
2 ·

1

r

[
sin

(
2r

rb

)
Ci

(
2r

rb

)
+

1

2
cos

(
2r

rb

){
π − 2Si

(
2r

rb

)}]
(2.47)

where Si(z), Ci(z) are the sine and cosine integrals given by the relations

Ci(z) = γ + ln(z) +

∫ z

0

cos(t)− 1

t
dt

Si(z) =

∫ z

0

sin(t)

t
dt

γ̄ ' .577 (2.48)

for γ = 1 where γ̄ is the Euler-Masceroni constant. As is obvious from (2.47), the

potential is dependent on the ratio r/rb where rb is the distance scale defined in (2.46).

As will soon become obvious, rb is a critical radius where the distance dependence of

the potential crosses over from that of 4D behavior to that of a 5D theory. This can

be directly witnessed from an expansion of the sine and cosine integrals.

In the near regime (r � rb), the potential behaves as

V (r) ' 1

4π2M
2 ·

1

r

[
π

2
+

{
−1 + γ̄ + ln

(
r

rb

)}(
r

rb

)
+O(

r2

r2
b

)

]
(2.49)

The potential scales as 1/r with an additional logarithmic repulsion term. This loga-

rithmic repulsion predicts a deviation from 4D Newtonian gravity which is dependent

on the value of the rb.
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In the far regime (r � rb), we obtain

V (r) ' 1

4π2M
2 ·

1

r

[
rb

r
+O(

r2
b

r2
)

]
(2.50)

which to first order corresponds to a potential of a 5D theory.

Using the solution for the Green function given in (2.45), we can obtain the

solution for the metric and scalar perturbations (2.29, 2.30) in D = 5. The solutions

are

h̃µν(p, y) = − 1

M
2
(p2 + 2mbp)

{
T̃µν −

1

3

(
ηµν +

pµpν

2mbp

)
T̃

}
e−py

h̃α
α(p, y) =

T̃

6M
2
mbp

e−py (2.51)

We can examine this solution on the brane in the decoupling limit (y =

0, limmb→0) and compare it to that of the 4D Einstein solution given by the ex-

pressions

h̃4D
µν (p) = − 1

M
2
p2

{
T̃µν −

1

2
ηµνT̃

}
h̃α 4D

α (p) =
T̃

M
2
p2

(2.52)

In this decoupling limit, one would expect (2.51) to reduce to (2.52) on the

brane. As is obvious from (2.51), this is certainly not the case. In the decoupling

limit, note that the factor of 1/3 remains. This discrepancy with the factor of 1/2

of the 4D Einstein solution signals a discontinuity and is known to disagree with

astronomical data. Also notice that both the scalar propagator and the pµpν term

diverge in this limit, one should certainly demand a small value of h̃µν , h̃α
α in a valid

perturbative solution. We will come back to these discrepancies in Chapters 4 and 5

26



when we show that they are do to a breakdown of the linearized theory and obtain

solutions which are well-behaved in the decoupling limit.

2.2.2 DGP in D > 5

As was previously mentioned, when D > 5 the function D̃(p, y) in (2.43) diverges on

the brane in the expression for the Green function

G̃(p, y) =
D̃(p, y)

MD−2 + γM
2
p2D̃(p, 0)

(2.53)

This expression for the Green function is discontinuous at the location of the brane,

yielding a finite jump between the solution on the brane world-volume (y = 0) and in

the bulk (y 6= 0). Due to this divergence, we obtain the discontinuous Green function

of the form

G̃(p, 0) =
1

γM
2
p2

(2.54)

on the brane. Taking the inverse Fourier transform and using eq.(2.41), we arrive at

a value for the potential on the brane worldvolume of

V (r) =
1

8πM
2 ·

1

r
(2.55)

which is exactly the static potential between two point sources of unit mass in a

purely four-dimensional theory.

Using eqs.(2.36), we obtain a value for the metric perturbations of the form

h̃µν(p, 0)T̃
′µν = − 1

M
2
p2

{
T̃µνT̃

′µν − 1

2
T̃ T̃ ′

}
h̃α

α(p, 0) = − (6−D)

2(D − 5)
· T̃

M
2
p2

(2.56)
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Comparing this solution for the graviton propagator on the brane to that of

4D Einstein gravity given by (2.52), we find identical expressions. Therefore, the

DGP model for a delta-function type brane in D > 5 yields a graviton propagator

with an identical tensor structure and 4D momentum dependence to that of a purely

4D theory. As was mentioned earlier in this section, this expression is obtained in a

singular manner and should be treated carefully.

Although we obtain identical expressions for the graviton propagator, it should

be noted that we acquire a value for the trace, h̃α
α, which agrees in the 4D momentum

dependence but differs by a multiplicative factor. This discrepancy can be accounted

for by noting that the scalar propagator h̃α
α is not a gauge-invariant quantity unlike

the graviton propagator h̃µν(p, 0)T̃
′µν . By making a different choice of gauge, one

should be able to scale the value of the scalar propagator to within agreement of the

4D theory.

In the bulk (y 6= 0), there are two distinct cases which differ depending on the

value of the four-momentum squared. The Green function for an identically zero four-

momentum squared (p2 = 0) differs from that of the a non-vanishing four-momentum

squared. The two distinct cases are presented in turn.

Vanishing four-momentum squared (p2 = 0)

In this case, (2.39) and (2.43) reduce to the form

−MD−2�NG̃(0, y) = δD−4(y)

−�ND̃(0, y) = δD−4(y) (2.57)

which is the equation for the Euclidean Green function in the transverse space. The
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solution for the Green function is given by the expression

G̃(0, y)|y 6=0 ∼ lim
p2→0

1

MD−2

(
p

y

)(D−6)/2

K(D−6)/2(py) (2.58)

Where Kn(py) is a modified Bessel function. The solution scales as

G̃(0, y)|D>6 ∼
1

yD−6
(2.59)

When D = 6, the Euclidean Green function has a logarithmic singularity at p2 = 0

G̃(0, y)|D=6 ∼ ln(py)|p2=0 →∞ (2.60)

Therefore, there exists a (D−4)-dimensional Green function for the case when p2 = 0

which corresponds to the p2 = 0 mode providing interactions between the bulk and

brane; this indicates that the bulk-space exhibits infrared transparency and can be

probed by gravitons of vanishing four-momentum. This mode should be produced

with a non-zero three-momentum.

Again, using (2.29,2.30), the solution for the metric perturbations are

h̃µν(0, y) = − 1

MD−2

{
T̃µν −

1

(D − 2)
ηµνT̃

}
D̃(0, y)

h̃α
α(0, y) =

1

MD−2

(6−D)

(D − 2)
D̃(0, y) (2.61)

This solution for the metric perturbations have a D-dimensional tensor struc-

ture and a (D − 4)-dimensional distance dependence; this is the solution of D-

dimensional theory. For the case of (p2 = 0), the metric perturbations give rise

to interactions between matter placed in the bulk and matter localized on the brane

[9].
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Non-vanishing four-momentum squared (p2 6= 0)

For the case of p2 6= 0, the Green function, and hence the metric perturbations,

vanish identically in the bulk

G̃(p, y)|y 6=0 = 0

h̃µν(p, y)|y 6=0 = 0 (2.62)

Therefore, the p2 6= 0 mode cannot produce interactions between the bulk and

brane worldvolume matter.

To restate the results of the chapter, we reexamined the general features of

Brane-Induced-Gravity of a 3-brane embedded in an infinite-volume, Minkowski bulk-

space. We limited our analysis to the simplest case of the Dvali-Gabadadze-Porrati

(DGP) model which is described by an induced 4D Einstein-Hilbert action, which

arises from the interactions of the brane worldvolume matter with the bulk gravitons,

of a delta-function type 3-brane embedded in a Minkowski bulk-space described by a

D-dimensional Einstein-Hilbert action. Expanding around the flat background, we

obtain the solution for the graviton propagator in the separate cases of D = 5 and

D > 5. For the case of D = 5, we show that the solution suffers from the vDVZ

discontinuity of massive gravity and does not reproduce a 4D Newtonian potential in

the decoupling limit. This vDVZ discontinuity is due to the breakdown of the weak

field expansion; we will return to this problem in Chapters 4 and 5.

For the case of D > 5, we obtain the solution for the graviton propagator

which is discontinuous at the location of the brane. This discontinuity of the solution

for the graviton propagator can be made continuous by giving the brane an effective

thickness which regulates the theory. On the brane, we show that the graviton prop-

agator is exactly that of 4D Einstein gravity yielding a 4D tensor structure and 4D

distance dependence. In the bulk, we obtain a non-zero amplitude for a vanishing
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4D worldvolume momentum only, which implies that the bulk-space exhibits infrared

transparency. In the next chapter, we proceed by studying a “fat” brane in D > 5

dimensions, which is much more involved than the delta-function type brane, to reg-

ulate the discontinuity of the graviton propagator. After the solution for the graviton

propagator in the fat brane scenerio is found, we should be able to proceed by taking

a thin brane limit of the graviton propagator and reproduce the results of the DGP

model of the delta-function type brane.
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Chapter 3

Fat Branes in Infinite-Volume

Extra Space

In the previous chapter, we discussed the DGP model of a delta-function type 3-

brane residing in a Minkowski bulk. In this chapter, the 3-brane is allowed to have

finite thickness into the bulk-space with extent governed by the density function

σΛ(y). This generalized “fat” brane scenario can arise from transverse fluctuations

of the δ-function brane into the bulk giving the brane an effective finite thickness.

Alternatively, and from a more fundamental perspective, a brane of non-zero thickness

can arise as a smooth soliton solution to a higher-dimensional theory. To see this

explicitly, it is instructive to consider φ4 interactions for a scalar particle in a five-

dimensional field theory. 1 This scenario can be described by a Lagrangian of the

form

L = −1

2
∂Aφ∂Aφ− 1

2
λ(φ2 − η3)2 (3.1)

The above Lagrangian is invariant under the Z2 transformation φ → −φ, however, the

vacuum states of the field are not. The symmetry breaking of the Z2 transformation

1See [27] for a more detailed analysis from which the above discussion is extracted
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is due to the fact that the vacuum states φ0 = ±η3/2 interchange under Z2.
2 This

symmetry breaking suggests that a domain wall should exist. The classical equation

of motion, which arises from the above Lagrangian, yields a domain wall solution of

the form

φcl(y) = η3/2 tanh
(√

λ η3/2y
)

(3.2)

which has a kink at the origin (y = 0).

As was shown in the previous chapter, the Green function for a delta-function

type brane is discontinuous at the boundary where the brane resides for D > 5. This

is due to the fact that the solution for the Green function is given by the product

solution G̃(p, y) = B̃(p)D̃(p, y) where the function D(p, y), defined by the equation

(p2 −�N)D̃(p, y) = δD−4(y) (3.3)

diverges at y = 0 when D > 5. A regularization scheme of either keeping higher-

dimensional derivative terms obtained from the next order contribution to the bulk

action (2.1), introducing a UV cutoff into the theory, or to alternatively regulate the

theory by giving the brane a finite thickness into the transverse direction [22, 23,

25, 26, 27, 28, 29] can be adopted which will allow for a careful examination of the

behavior of this Green function in the delta-function brane limit. For a brane of finite

thickness, the solution for the Green function will remain continuous at the boundary.

2It should be noted here that the vacuum state φ0 is a multi-valued function with the complex
plane containing two Riemann sheets; we’ll return to multi-valued functions in Chapter 4 when
we discuss the poles of the graviton propagator when we consider the Constrained Perturbative
Expansion.
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3.1 D-Dimensional Fat Brane Model

We are interested in the dynamics of a 3-brane in a D-dimensional infinite space. The

action for Brane Induced Gravity of a 3-brane of finite thickness is similar to the one

discussed in the previous chapter (2.13), [9]

S = MD−2

∫
d4xdD−4y

√
−G R(D) + M

2
∫

d4xdD−4y
√
−g σΛ(y)R(4) + SM (3.4)

where, as in the original DGP treatment, GAB is the D-dimensional metric which

generates the D-dimensional Ricci scalar R(D), whereas R(4) is generated by the

four-dimensional metric gµν which is the induced metric on the slice ~y = const.

gµν(x
α, ym)||~y|=const = δA

µ δB
ν GAB(xα, ym)||~y|=const (3.5)

Capital Latin indices run over D-dimensional space-time (A, B = 0, 1, 2, ..., D−

1), Greek indices run over the four-dimensional brane worldvolume spanned by co-

ordinates xµ (µ = 0, 1, 2, 3) and lowercase Latin indices run over the extra space

spanned by ym (m = 4, 5, ..., D). M is the D-dimensional Plank mass. SM is the

unspecified matter action giving rise to the fat brane configuration.

We set y = |~y| =
√

y2
1 + y2

2 + ... + y2
D−4. The density function σΛ(y) is a

smooth function of width 1/Λ which approximates a δ-function and generically obeys

the following relations

∫
dD−4yσΛ(y) = 1 , lim

Λ→∞
σΛ = δD−4(y) (3.6)

For explicit calculations, we will choose a step-function form of the density σΛ,

σΛ(y) = (D − 4)
ΛD−4

ωD−4

Θ(1/Λ− y) (3.7)
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where ωn is the surface area of the unit n-dimensional sphere. The careful reader may

wish to smooth the step-function first and then take the limit in which σΛ becomes

discontinuous. Our results are not altered.

Let us take a closer look at the structure of the brane contribution to the action.

This continuous distribution of the 3-brane may be thought of as the continuous limit

of a discrete set of the four-dimensional, delta-function type hypersurfaces (infinitely

thin 3-branes), as discussed in [9], each placed at position yi

Sbrane = M
2

N ′∑
i=1

∫
d4x
√
−gi(x, y) R(4)

i (x, y)||~y|=const (3.8)

where the 4D Ricci scalar and metric tensor are evaluated at position yi. Allowing

the delta-function type branes to be ‘smoothed out’ in the y direction, we obtain

N ′∑
i=1

√
−gi(x, y)R(4)

i (x, y)||~y|=const →
∫

dD−4y
√
−gσΛ(y)R(4)(x, y) (3.9)

This treatment is in close analogy to electromagnetic theory where point

charges are replaced by a charge density and the sum replaced by an integral in

the limit of the charges becoming very small and numerous.

Upon varying the action (3.4), we arrive at the field equations which are given

by

MD−2G
(D)
AB (xα, ym) + M

2
G(4)

µν (xα, ym)δµ
Aδν

BσΛ(y) = TAB(xα, ym) (3.10)

where G
(D)
AB is the D-dimensional Einstein tensor and G

(4)
µν only has brane worldvolume

components. Expanding around a flat background,

GAB = ηAB + hAB (3.11)

the first-order Einstein equations are as follows. The trace of the transverse compo-
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nents (nm) give

2∂A∂nhAn − ∂n∂
nhA

A − ∂A∂Ahn
n = (D − 4)(∂C∂DhCD − ∂C∂ChD

D) (3.12)

The mixed components (αn) give

∂A∂Ahαn = ∂α∂AhAn + ∂n∂
AhAα − ∂α∂nh

A
A (3.13)

and the brane worldvolume components (αβ) imply

MD−2(∂α∂AhβA + ∂β∂AhαA − ∂A∂Ahαβ − ∂α∂βhA
A − ηαβ

(
∂A∂BhAB − ∂B∂BhA

A

)
)

+M
2
σΛ(y) (∂α∂νhβν + ∂β∂νhαν − ∂ν∂

νhβα − ∂α∂βhν
ν − ηαβ (∂µ∂νhµν − ∂µ∂

µhν
ν) )

= Tαβ(xµ, ym) (3.14)

where we have chosen a matter source described by the stress-energy tensor Tµν whose

transverse components vanish (Tmn = Tµn = 0). Indices are raised and lowered by

the flat metric tensor ηAB.

To solve the field equations, we shall choose the harmonic gauge,

∂AhAB =
1

2
∂BhA

A . (3.15)

We obtain from eqs. (3.12) and (3.13), respectively,

(6−D)∂A∂Ahn
n = (D − 4)∂A∂Ahµ

µ (3.16)

∂A∂Ahmα = 0 (3.17)
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so we may set

hmα = 0 (3.18)

(D − 6)hn
n + (D − 4)hµ

µ = 0 (3.19)

Then the brane worldvolume components of the field equations can be written in the

following form:

−MD−2∂A∂A
(
hαβ − 1

2
ηαβhB

B

)
+ M

2
σΛ

(
−∂ν∂

νhαβ + ∂α∂βhn
n − 1

2
ηαβ ∂µ∂µ(hn

n − hν
ν)
)

= Tαβ(xµ, ym) (3.20)

Performing a Fourier transform in the brane worldvolume coordinates xµ and mul-

tiplying by an arbitrary conserved stress-energy tensor T ′αβ, which for simplicity is

assumed to have no ~y-dependence, we obtain

T̃αβ(pµ, ym)T̃ ′αβ − 1

2
T̃ ′µ

µ

[
M

2
p2σΛ (h̃ν

ν − h̃n
n) + MD−2(p2 −�N)h̃A

A

]
= −

[
MD−2(p2 −�N) + M

2
p2σΛ

]
h̃αβT̃ ′αβ (3.21)

where the Fourier transformed, D-dimensional d’Alembertian is ˜∂A∂A = p2 − �N

with p2 = p2
4 + ~p 2 the worldvolume Euclidean four-momentum and �N the (D − 4)-

dimensional Laplacian operator. In the next section, we procede to solve this equation

for the graviton propagator.

3.2 Graviton Propagator

In general, the spread functions of the brane and the matter source are different.

However, it was argued by Dvali, et al. [24] that the two spreads coincide at lowest
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order with correction terms suppressed by factors O(M/M). We shall therefore adopt

a source stress-energy tensor of the form

Tαβ(xµ, ~y) = Tαβ(xµ) σΛ(y) (3.22)

in the explicit calculation of the tensor structure and momentum dependence of the

graviton propagator.

Taking the trace of eq. (3.20), we obtain

(D − 2)

(6−D)

[
MD−2(p2 −�N)− 2(D − 5)

(D − 2)
M

2
p2σΛ

]
h̃α

α = T̃α
α σΛ(y) (3.23)

where we used eq. (3.19) to express h̃n
n in terms of h̃α

α. This is an equation for the

field h̃α
α (trace over transverse directions of the metric field), which is a scalar from

a four-dimensional point of view. The solution is obtained on the brane and in the

bulk in terms of the Green function to the wave equation,

[
MD−2 (p2 −�N)− (λ− 1) M

2
p2σΛ

]
Gλ(p, y) = σΛ(y) (3.24)

as

h̃α
α(p, y) =

(6−D)

(D − 2)
T̃α

α Gλ(p, y) , λ =
3(D − 4)

(D − 2)
(3.25)

After some algebra (see Appendix), we obtain a spherically symmetric solution ex-

pressed in terms of Bessel functions as

Gλ(p, y) |y≤1/Λ = − 1

(λ− 1)M
2
p2

[
1 +

1

Aλ

(
1

yΛ

)(D−6)/2

K(D−4)/2(p/Λ)J(D−6)/2(kλpy)

]
(3.26)
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inside the brane (y ≤ 1/Λ), and

Gλ(p, y) |y>1/Λ = − 1

(λ− 1)M
2
p2
· kλ

Aλ

(
1

yΛ

)(D−6)/2

J(D−4)/2(kλp/Λ)K(D−6)/2(py)

(3.27)

in the bulk (y > Λ), where

Aλ = kλK(D−6)/2(p/Λ)J(D−4)/2(kλp/Λ)−K(D−4)/2(p/Λ)J(D−6)/2(kλp/Λ) (3.28)

and we have introduced the constant kλ given by

k2
λ = (λ− 1)

(D − 4)ΛD−4 M
2

ωD−4 MD−2
− 1 ' (λ− 1)

(D − 4)ΛD−4 M
2

ωD−4 MD−2
(3.29)

Notice that inside the brane, Gλ(p, y) oscillates rapidly over the transverse width of

the brane.

To obtain the graviton propagator, we will also need the Green function which

is the solution to eq. (3.24) when λ = 0. Notice that when λ = 0, eq. (3.24) turns

into the wave equation for a scalar field in the thin-brane limit. This scalar field

equation is derivable from a scalar field action. The solution for the Green function

when λ = 0 is given in terms of Modified Bessel functions (see Appendix) of the form

G0(p, y) |y≤1/Λ =
1

M
2
p2

[
1− 1

A0

(
1

yΛ

)(D−6)/2

K(D−4)/2(p/Λ)I(D−6)/2(κpy)

]
(3.30)

inside the brane (y ≤ 1/Λ), and

G0(p, y) |y>1/Λ =
1

M
2
p2
· κ

A0

(
1

yΛ

)(D−6)/2

I(D−4)/2(κp/Λ)K(D−6)/2(py) (3.31)
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in the bulk (y > 1/Λ), where

A0 = κI(D−4)/2(κp/Λ)K(D−6)/2(p/Λ) + I(D−6)/2(κp/Λ)K(D−4)/2(p/Λ) (3.32)

and (see eq. (3.29))

κ2 = −k2
0 = 1 + (D − 4)

ΛD−4 M
2

ωD−4 MD−2
' (D − 4)

ΛD−4 M
2

ωD−4 MD−2
(3.33)

We are now ready to deduce the full graviton propagator. To this end, let us

massage eq. (3.21) into the form

[
MD−2(p2 −�N) + M

2
p2σΛ(y)

]{
h̃αβ(p, y)T̃ ′αβ +

(D − 5)

3(6−D)
h̃α

α(p, y)T̃ ′ν
ν

}

= −
{

T̃αβT̃ ′αβ − 1

3
T̃ µ

µ T̃ ′ν
ν

}
σΛ(y) (3.34)

The solution for the graviton propagator is readily obtained in terms of the scalar

propagators,

h̃αβ(p, y)T̃ ′αβ = −
{

T̃αβT̃ ′αβ − 1

3
T̃ µ

µ T̃ ′ν
ν

}
G0(p, y)− (D − 5)

3(D − 2)
T̃ µ

µ T̃ ′ν
ν Gλ(p, y) (3.35)

where we used eqs. (3.24) and (3.25). This is the solution for the graviton propagator

for a brane of finite thickness which should reduce to that of the solution for the

graviton propagator for the delta-function type brane when Λ →∞. Throughout the

remainder of the chapter we shall analyze the 4D momentum dependence, the pole

structure, and the Λ dependence of the propagator.
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3.3 Poles of the Graviton Propagator

Next, we analyze the pole structure of the graviton propagator. We then compare

the results of our model with that of Dubovsky and Rubakov [29].

3.3.1 Our model

Using the expressions (3.30) for G0(p, y) and (3.26) for Gλ(p, y), the graviton propa-

gator (3.35) inside the brane (y ≤ 1/Λ) can be written in the form

h̃αβ(p, y)T̃ ′αβ = − 1

M
2
p2

{
T̃αβT̃ ′αβ − 1

2
T̃α

α T̃ ′β
β

}
+

(
1

yΛ

)(D−6)/2

K(D−4)/2(p/Λ)

× 1

M
2
p2

[{
T̃αβT̃ ′αβ − 1

3
T̃α

α T̃ ′β
β

}
1

A0

I(D−6)/2(κpy) +
1

6
T̃α

α T̃ ′β
β

1

Aλ

J(D−6)/2(kλpy)

]
(3.36)

For convenience, we have separated the term that corresponds to the tensor

structure and momentum dependence of the four-dimensional graviton propagator.

To study the pole structure, we shall introduce the average value of the graviton

propagator over the transverse directions of the brane (see [23] for problems associated

with the definition of observables on the brane) defined by

h̃Brane
αβ (p) =

∫
dD−4yσΛ(y)h̃αβ(p, y) (3.37)

Integrating (3.36), we obtain

h̃Brane
αβ (p)T̃ ′αβ = − 1

M
2
p2

{
T̃αβT̃ ′αβ − 1

2
T̃α

α T̃ ′β
β

}
− (D − 4)(6−D)

(
Λ

Mp2

)2
[

T 2
1/3

κ2[1 + µ0(κp/Λ)]
+

1
6
T̃α

α T̃ ′β
β

k2[1− µλ(kλp/Λ)]

]
(3.38)
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where for brevity we wrote T 2
1/3 =

{
T̃αβT̃ ′αβ − 1

3
T̃α

α T̃ ′β
β

}
. We may easily deduce the

pole structure of the graviton propagator inside the brane. The above expression is

valid for D > 6 (for D = 6, we obtain logarithmic corrections, but the results are

similar and will not be explicitly discussed here). The functions that appear in the

denominators in (3.38) are

µ0(z) =
D − 6

z

I(D−6)/2(z)

I(D−4)/2(z)
, µλ(z) =

D − 6

z

J(D−6)/2(z)

J(D−4)/2(z)
(3.39)

for D > 6. The poles of the propagator are solutions to the equations

µ0(κp/Λ) = −1 , µλ(kλp/Λ) = 1 (3.40)

Using (3.39) and the Bessel function identity

zJν−1(z) + zJν+1(z) = 2νJν(z) (3.41)

for ν = (D − 6)/2, it is easily shown that the solutions to µλ(z) = 1 are the roots

of Jν−1 = J(D−8)/2. As is well-known, there are infinitely many zeros for ν > 0, i.e.,

D > 6, which is the case we are considering here. We shall denote them by zj,

J(D−8)/2(zj) = 0 , j = 1, 2, . . . (3.42)

We therefore obtain an infinite tower of tachyonic poles with masses given by

m2
∗j = p2

∗j = z2
j

Λ2

k2
λ

(3.43)
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Similarly, the condition µ0(z) = −1, together with the Bessel function identity

zIν−1(z)− zIν+1(z) = 2νIν(z) (3.44)

and the relation Iν(z) = e−πνi/2Jν(iz), lead to a tower of massive poles with masses

given by

m2
j = −p2

j = −z2
j

Λ2

κ2
(3.45)

To obtain the behavior of the propagator near a massive pole, observe that

1 + µ0(z) =
I(D−8)/2(z)

I(D−4)/2(z)
=

I ′(D−8)/2(zj)

I(D−4)/2(zj)
(z − zj) +O((z − zj)

2) (3.46)

Using the Bessel function identity

zI ′ν−1(z) = (ν − 1)Iν−1(z) + zIν(z) (3.47)

together with (3.44), we deduce

1 + µ0(z) =
1

(D − 6)
(z2 − z2

j ) + . . . (3.48)

near z = zj. It follows that the graviton propagator on the brane (3.38) behaves as

h̃Brane
αβ (p)T̃ ′αβ ∼ −(D − 4)

(D − 6)2/z4
j

M
2
(p2 + m2

j)

{
T̃αβT̃ ′αβ − 1

3
T̃α

α T̃ ′β
β

}
(3.49)

near the massive pole p2 = −m2
j . Similarly, near the tachyonic pole p2 = −m2

∗j, we

obtain

h̃Brane
αβ (p)T̃ ′αβ ∼ +

(D − 4)

6

(D − 6)2/z4
j

M
2
(p2 −m2

∗j)
T̃α

α T̃ ′β
β (3.50)

The plus sign of the residue of the tachyon implies that the tachyon is a ghost.
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Notice that both the massive modes (3.45) and the tachyons (3.43) are ex-

pressed in terms of the same mass scale parameter pc, where

p2
c ∼

Λ2

κ2
∼ Λ2

k2
λ

∼ MD−2

M
2
ΛD−6

(3.51)

In the thin-brane limit (Λ →∞), we have pc → 0 and the infinite towers of massive

modes and tachyons turns into continuous spectra. The form of the propagator in

this limit is easily deduced from eq. (3.38). For momenta away from the critical scale

(|p| � pc), the two terms in (3.38) that give rise to the massive and tachyonic poles

become vanishingly small and we are left with

h̃Brane
αβ (p)T̃ ′αβ ∼ − 1

M
2
p2

{
T̃αβT̃ ′αβ − 1

2
T̃α

α T̃ ′β
β

}
(3.52)

recovering four-dimensional Einstein gravity.

3.3.2 The Dubovsky-Rubakov model

It is interesting to note that similar results have been obtained by Dubovsky and

Rubakov [29] using a slightly different model. In order to directly compare our results

with theirs, we shall assume that the spread function (denoted by f 2(y) in [29]) is

given by eq. (3.7). Then the Einstein field equations proposed in [29] can be written

as

F(�(D))G
(D)
AB (xµ, ym)+M

2
σΛ(y)

∫
dD−4y′σΛ(y′) G

(4)
AB(xµ, y′m) = TAB(xµ, ym) (3.53)

to be compared with the Einstein eq. (3.10) in our model. In eq. (3.53), the four-

dimensional Einstein tensor only has brane worldvolume components (i.e., G
(4)
aB = 0)

and the form-factor F ≈ MD−2 at low energies. Also, the matter source on the brane
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will be assumed to have only space-time components Tµν and a spread function same

as that of the brane,

Tµν(x, y) = Tµν(x)σΛ(y) (3.54)

where Tµν(x) is conserved in the four-dimensional sense (cf. eq. (3.22) in our model).

The inverse width Λ of the spread function is assumed to be Λ ∼ M in [29] to be

contrasted with our model in which Λ ∼ M , since it coincides with the inverse width

of the brane [9].

Working as in section 3.1, we linearize the Einstein equations and obtain the

graviton propagator in the form

h̃µν(p, y)T̃ ′µν =
2

C

{
T̃µνT̃

′µν − 1

3
T̃ µ

µ T̃ ′λ
λ

}
G1(p, y)− 1

3C∗
T̃ µ

µ T̃ ′λ
λ G1(p, y) (3.55)

where we multiplied by the arbitrary stress-energy tensor T ′
µν to absorb the longitu-

dinal part which is not gauge-invariant. It is given in terms of the Green function

which satisfies eq. (5.37) for λ = 1,

MD−2 (p2 −�N)G1(p, y) = σΛ(y) (3.56)

(denoted by Df in [29]). The denominators are

C = 1−M
2
p2GBrane

1 , C∗ = 1 + M
2
p2GBrane

1 (3.57)

where GBrane
1 is the average of G1 over the spread function (defined as in eq. (3.37)

and denoted by Dff in [29]). Explicitly,

GBrane
1 (p) =

κ2

M
2
Λ2

f(p/Λ) , f(z) =
1

z2

[
1− (D − 4)K(D−4)/2(z)I(D−4)/2(z)

]
(3.58)
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where we introduced the function f(z) for convenience and the scale κ, which coincides

with our earlier definition (3.33) in the large Λ limit,

κ2 = (D − 4)
ΛD−4M

2

ωD−4MD−2
(3.59)

The poles of the propagator (3.55) are the zeros of C and C∗. They can easily be seen

to correspond to small z, therefore we may approximate C ≈ 1− κ2f(0)p2/Λ2, whose

root is

m2 ≈ Λ2

κ2f(0)
∼ MD−2

M
2
ΛD−6

, (3.60)

which is a massive pole. Similarly, the root of C∗ is a tachyonic pole

m2
∗ ≈ −m2 ∼ − MD−2

M
2
ΛD−6

(3.61)

Notice that the mass scale is similar to the mass scale of the poles in our model (3.51),

although in this model only one pair of poles is obtained instead of the infinite tower

we found in our model. This scale matches the one found in [29] if we set Λ ∼ M , in

which case m ∼ M2/M .

3.4 Momentum Dependence of the Graviton Prop-

agator

Having understood the large Λ limit, we now turn to a study of the momentum

dependence of the graviton propagator keeping Λ finite. By introducing the width

1/Λ, we have added a scale to the theory in addition to the mass scales M and M .

It follows from the explicit form of the propagator that the relevant scales are Λ

and Λ/k, where k ∼ kλ ∼ κ is a dimensionless parameter given by (3.33) or (3.29).

Phenomenologically, one expects Λ ∼ M and M � M . So we shall restrict attention
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to momenta that are well below the scale Λ (p � Λ). This range is divided by the

scale given by eq. (3.51) into a small momentum (p � pc) and a large momentum

(p � pc) regime. Qualitatively, one expects four-dimensional behavior of the graviton

propagator for large momenta and D-dimensional behavior for small momenta [9]. We

wish to study this behavior quantitatively.

For small momentum, p � pc, we have

G0(p, y) ≈ Gλ(p, y) (3.62)

as can easily be verified from eqs. (3.27) and (3.31) in the bulk and eqs. (3.26) and

(3.30) on the brane. The resulting tensor structure of the graviton propagator (3.35)

is

h̃αβ(p; y)T̃ ′αβ ' −
{

T̃αβT̃ ′αβ − 1

(D − 2)
T̃α

α T̃ ′β
β

}
G0(p, y) (3.63)

In the bulk, we deduce from (3.31),

G0(p; y) ∼
(

1

py

)(D−6)/2

K(D−6)/2(py) (3.64)

which is the propagator for a D-dimensional scalar field. Therefore, the graviton

behaves as a D-dimensional field in both its momentum dependence and its tensor

structure in the bulk.

On the brane, after averaging over its transverse width, eq. (3.63) yields in the

regime p � pc

h̃Brane
αβ (p)T̃ ′αβ ∼ − 1

M
2

p2

{
T̃αβT̃ ′αβ − 1

(D − 2)
T̃α

α T̃ ′β
β

}
×

[
1− 1

A0 Γ
(

D−4
2

) (κp

2Λ

)(D−6)/2

K(D−4)/2(p/Λ)

]
(3.65)
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where we used eqs. (3.30) and (3.37). It is easy to see that the 1/p2 pole vanishes.

The first non-analytic term can be found from the expansion for small argument

Kν(z) =
1

2
Γ(ν)

(z

2

)−ν

(1 + . . .) +
(−)ν+1

Γ(ν + 1)

(z

2

)ν

ln
(z

2

)
+ . . . (3.66)

for integer ν, where the dots represent higher-order and analytic terms. Applying

this to eq. (3.65), we obtain

h̃Brane
αβ (p)T̃ ′αβ ∼ −

{
T̃αβT̃ ′αβ − 1

(D − 2)
T̃α

α T̃ ′β
β

}
(−)(D−4)/2

( p

Λ

)D−6

ln(p/Λ) (3.67)

exhibiting D-dimensional behavior. Similar conclusions may be drawn for the trace

h̃α
α in the small momentum regime (p � pc).

In the large momentum regime (Λ � p � pc), the results are similar to those

in the large Λ limit, which we discussed in the previous section. In this regime, the

scalar Green functions are related by

G0(p, y) ≈ (λ− 1)Gλ(p, y) (3.68)

to be contrasted with the relation (3.62) in the regime p � pc. Thus the tensor

structure of the graviton propagator (3.35) becomes

h̃αβ(p, y)T̃ ′αβ ∼ −
{

T̃αβT̃ ′αβ − 1

2
T̃α

α T̃ ′β
β

}
G0(p, y) (3.69)

exhibiting four-dimensional behavior. Inside the brane, we deduce from (3.30)

h̃Brane
αβ (p)T̃ ′αβ = − 1

M
2
p2

{
T̃αβT̃ ′αβ − 1

2
T̃α

α T̃ ′β
β

}
+O

(
(pc/p)2

)
(3.70)

exhibiting the distance dependence of Newtonian gravity with the tensor structure
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of four-dimensional Einstein gravity. This is in agreement with our earlier conclu-

sion (3.52) in the large Λ limit. In the bulk (y > 1/Λ), we deduce from (3.31)

h̃αβ(p, y)T̃ ′αβ ∼ 1

M
2
p2

( p

Λ

)1/2
(

1

yΛ

)(D−6)/2

ep/Λ

{
T̃αβT̃ ′αβ − 1

2
T̃α

α T̃ ′β
β

}
K(D−6)/2(py)

(3.71)

Therefore, the propagator vanishes in the thin brane limit (Λ → ∞). These results

for the momentum dependence of the tensor structure of the graviton propagator are

in agreement with the qualitative suggestions [9].

To recap the results of the present chapter, we’ve generalized the DGP model

by allowing the 3-brane to have a finite thickness extending into the bulk-space. We

solved the field equations and obtained the value of the graviton propagator both on

the brane and in the bulk. We found that the solution for the graviton propagator

contains an infinite number of massive poles and tachyonic ghosts for the 3-brane

of finite thickness in this simplest setup. By allowing for this more general case of

a finite brane thickness, we’ve effectively introduced a new scale Λ into the theory

which gives rise to a critical 4D momentum pc. In the limit that the 3-brane becomes

“thin”, the tensor structure of the graviton propagator reduces to that of the DGP

model [9] which was presented in the previous chapter.

The graviton propagator for the 3-brane of finite thickness experiences a 4D

worldvolume momentum dependence; this 4D momentum dependence corresponds

to a 4D distance dependence when the inverse Fourier transform is performed. In

the large 4D momentum limit, p � pc, we recover a solution which has the tensor

structure of a 4D theory. Conversely, in the small 4D momentum limit, p � pc, we

obtain a solution with a D-dimensional tensor structure.
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Chapter 4

Constrained Perturbative

Expansion of the DGP Model

This chapter contains a slightly revised version of a paper by the same name published

in the journal Physics Letters B in 2005 by Chad Middleton and George Siopsis:

C. Middleton and G. Siopsis, Constrained Perturbative Expansion of the DGP

Model. Phys. Lett. B, Vol.613 (2005) pps. 189-196 [48].

In the previous chapter, we generalized the DGP model by allowing the 3-

brane to have a finite thickness into the transverse bulk-space. In this chapter, we

address the issue of the van Dam-Veltman-Zacharov (vDVZ) discontinuity [30, 31]

which arises in the unique case of (D = 5) dimensions. Our discussion follows closely

to that of the Pauli-Fierz model of massive gravity which also suffers from the vDVZ

discontinuity at linear order. This chapter is organized as follows. In section 4.1,

we add an additional linear action contribution to the 4D Einstein-Hilbert (EH)

action in order to arrive at a possible candidate for a 4D theory of massive gravity.

This additional action contribution exhausts all possible linear combinations of the

metric perturbations which will give rise to a local, massive propagator which is

written in terms of two free parameters. After obtaining the solution for the metric
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perturbations for this general massive graviton theory, we explore the parameter

space and find that the free parameters are severely constrained when one insists

on a ghost-free, tachyon-free theory of 4D massive gravity; this brings us to the 4D

model of Pauli-Fierz (PF) [42]. We compare the PF massive graviton solution to

that of the EH massless theory and show that one does not recover the expected 4D

Einstein solution in the limit of vanishing graviton mass of PF model; this is the

vDVZ discontinuity. In section 4.2, we examine the vDVZ discontinuity of the 5D

DGP model. We introduce a generalized Constrained Perturbative Expansion, which

amounts to additional brane and bulk action contributions written in terms of free

parameters, to cure the breakdown of the perturbative solution at linear order. By

subjecting the DGP model to these general regulating conditions, we find a solution

for the metric perturbations which is written in terms of these free parameters. We

show that this solution has the expected 4D momentum-dependent crossover behavior

and is found to be independent of the brane and bulk parameters in the near and

far regimes. In the near regime, the solution reduces to that of EH action with a

4D tensor structure and distance dependence; in the far regime we find that the

solution is that of a purely 5D bulk theory having a 5D tensor structure and distance

dependence. We then explore this parameter space and identify the regions which

give rise to non-tachyonic type resonances and hence a stable vacuum state.

4.1 The vDVZ Discontinuity of Massive Gravity

We start by presenting a possible candidate for a general theory of 4D massive gravity.

In addition to the fully covariant, 4D Einstein-Hilbert action, we add an additional

linearized massive contribution of the form

SM = M
2
∫

d4x
√
−g

(
R(4) +

λm2
g

4
[hµνh

µν − ξh2]

)
+ SM (4.1)
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Here we have written the action in terms of free paramenters λ, ξ; this additional

massive action allows for all possible combinations of the metric perturbations which

will give rise to additional local field contributions to the field equations at linear

order. The Pauli-Fierz action [42] of a graviton mass mg in four spacetime dimensions

is described by the action when λ = 1, ξ = 1 which, consequently, is the only allowable

form which is free of tachyonic and ghost-like states, as we’ll show below.

Upon varying the action (4.1), we arrive at the following linearized field equa-

tions

Tµν = M
2 [

∂µ∂
αhαν + ∂ν∂

αhαµ −�4hµν − ∂µ∂νh
α
α − ηµν(∂

α∂βhαβ −�4h
α
α)
]

− λm2
g M

2
(hµν − ξηµνh) (4.2)

Fourier transforming (4.2), we arrive at an equation of the form

T̃µν = M
2
[
pµp

αh̃αν + pνp
αh̃αµ − p2h̃µν − pµpν h̃

α
α − ηµν(p

αpβh̃αβ − p2h̃β
β)
]

+λm2
g M

2
(h̃µν − ξηµν h̃) (4.3)

where p2 = −p2
α ≡ −pαpα is the 4D Euclidean momentum. As has been the notation

throughout this work, quantities with tildes correspond to the Fourier transforms.

Dotting (4.3) with pµ, we obtain the following relation

λm2
g(p

µh̃µν − ξpν h̃) = 0 (4.4)

which is an additional constraint equation not present in the 4D Einstein-Hilbert

theory (λ = 0). As is obvious from the above equation (4.4), gauge invariance of the

linearized massive theory is explicitly broken by the addition of the massive action

contribution (4.1). This is in contrast to the generally covariant 4D Einstein-Hilbert
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action which gives rise to the massless field equations in which a choice of gauge must

be incorporated into the theory to break the manifest gauge invariance. Eq.(4.4) acts

effectively as a gauge fixing term in the massive theory and remains in the limit of

vanishing graviton mass (mg → 0). As will become obvious later in this discussion,

the choice of free parameter ξ = 1 amounts effectively to a poor gauge choice for the

4D EH theory and will not allow for a smooth transition to 4D Einstein gravity in

the massless limit.

Taking the trace and using (4.4), we arrive at an equation for the trace of the

metric perturbations given by

T̃ = M
2 [

2(1− ξ)p2 − λ(1− 4ξ)m2
g

]
h̃α

α (4.5)

which can be inverted to yield the solution for the scalar propagator

h̃α
α(p) =

T̃

M
2 [

2(1− ξ)p2 − λ(1− 4ξ)m2
g

] (4.6)

Now that we’ve arrived at the solution for the scalar propagator, we proceed

to solve (4.3). After some algebra, the solution for the metric perturbations is given

by

h̃µν(p) = − 1

M
2
(p2 + λm2

g)

{
T̃µν −

1

2
(ηµνC1 −

pµpν

p2
α

C2)T̃

}
(4.7)

where the functions C1, C2 are given by

C1 =
[2(1− ξ)p2 + 2λξm2

g]

[2(1− ξ)p2 − λ(1− 4ξ)m2
g]

C2 =
2(1− 2ξ)p2

[2(1− ξ)p2 − λ(1− 4ξ)m2
g]

(4.8)

To study the pole structure, we decompose the metric perturbations into the
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following form

h̃µν(p) = − 1

M
2
(p2 + λm2

g)

{
T̃µν −

1

3

(
ηµν −

pµpν

p2

)
T̃

}
+

T̃

6M
2
(p2 + βλm2

g)

(
ηµν + 2β

pµpν

p2

)
(4.9)

where we’ve introduced the parameter β which is defined by the relation

β =
(4ξ − 1)

2(1− ξ)
(4.10)

As is obvious from (4.9), we see that the solution for the metric perturbations have

two poles when p2 = −λm2
g and p2 = −βλm2

g. These poles give rise to massive

propagators when λ, β > 0 and tachyonic-type propagators when λ, β < 0 which

signals an unstable vacuum state of the theory.

So far we have treated λ, ξ as free parameters. At this point we must constrain

the values of the parameters in order to ensure a well-defined theory with a stable

vacuum: one that is free of tachyons and ghosts.

Examining the first pole of the metric perturbations in (4.9), we find a non-

tachyonic pole when λ > 0. It follows that the metric perturbations behave as

h̃µν(p) ∼ − 1

M
2
(p2 + λm2

g)

{
T̃µν −

1

3

(
ηµν −

pµpν

p2

)
T̃ ′
}

(4.11)

near the massive pole p2 = −λm2
g. The minus sign in front of the residue signals a

well-defined amplitude.

We now proceed by examing the second pole of the metric perturbations. With

λ > 0 now required from the previous analysis of the first pole, we see that a second
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constraint must be imposed on the free parameters of the form

1/4 ≤ ξ ≤ 1 (4.12)

which again ensures a non-tachyonic type pole structure. Again examining the be-

havior near the second pole p2 = −βλm2, we obtain

h̃µν(p) ∼ 1

6M
2
(p2 + βλm2

g)

(
ηµν + 2β

pµpν

p2

)
T̃ (4.13)

The plus sign of the residue of the non-tachyonic pole implies a ghost-like state and

signals an inconsistency of the theory. The only value of the parameter ξ which doesn’t

introduce ghosts into the theory is when ξ = 1 in which case the mass diverges and

the ghost decouples from the theory. For this completely constrained value of the

parameter ξ, the solution for the metric perturbations take the form

h̃PF
µν (p)|ξ=1 = − 1

M
2
(p2 + λm2

g)

{
T̃µν −

1

3

(
ηµν +

pµpν

λm2
g

)
T̃

}
(4.14)

This solution corresponds to that of the Pauli-Fierz form [42] of massive gravity when

λ = 1. It should be emphasized that ξ = 1, λ > 0 are the only allowable values of

the free parameters that yield a purely 4D local theory containing a massive graviton

propagator and are free of tachyonic-type resonances and ghost-like states.

The above results are illustrated by the two-dimensional plot of the (ξ, λ)

parameter space in Figure 4.1.

This solution (4.14) should be compared with the solution of the linearized

Einstein equations in the harmonic gauge, which are given by

h̃4D
µν (p) = − 1

M
2
p2

{
T̃µν −

1

2
ηµνT̃

}
(4.15)
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Figure 4.1: The two-dimensional (ξ, λ) parameter space of linearized massive gravity.
Within the strip 1/4 < ξ < 1, λ > 0, the theory is free of tachyonic-type poles;
outside, we have tachyons (instability). The line ξ = 1, λ > 0 corresponds to a
ghost-free and tachyon-free linear massive gravity model. The Pauli-Fierz model of
massive gravity [42] is represented by the point ξ = 1, λ = 1.
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The phenomenological differences of the massive (4.14) and the massless (4.15) cases

are usually summarized by quoting the discrepancy in the prediction for the bending

of light by the Sun. To see how this conflict emerges, note that the stress-energy

tensor for light is traceless (T = 0), therefore the two expressions for the graviton

agree as mg → 0, provided we set the coupling constants (M) equal to each other

in the two cases. However, this demand leads to a disagreement in the prediction

of the strength of the gravitational force (Newton’s Law). Indeed, if we couple the

graviton to a conserved stress-energy tensor T ′µν , we obtain from (4.14) and (4.15),

respectively,

h̃PF
µν (p)T̃ ′µν = − 1

M
2
(p2 + m2

g)

{
T̃µνT̃

′µν − 1

3
T̃ T̃ ′

}
h̃4D

µν (p)T̃ ′µν = − 1

M
2
p2

{
T̃µνT

′µν − 1

2
T̃ T̃ ′

}
(4.16)

To examine the behavior of the massive and massless solutions for the met-

ric perturbations explicitly, we choose the stress-energy tensors to represent static

point sources of masses m1, m2. By taking inverse Fourier transforms, we obtain the

gravitational potentials given by the equation

V (r) =

∫
d3p

(2π)3
ei~p·~rh̃µν(p)T̃

′µν (4.17)

where the only non-vanishing components of the stress-energy tensor are T̃00, T̃
′00.

Plugging the values for the massive and massless graviton propagator (4.16) into eq.

(4.17) gives the Newtonian and Yukawa potentials

V PF(r) =
4

3

1

8πM
2

m1m2

r
e−mgr
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V 4D(r) =
1

8πM
2

m1m2

r
(4.18)

which disagree with each other even in the limit mg → 0 by a factor of 4/3. We can

make them agree with each other if we demand that M
2

in the massive case be 4/3 of

M
2

in the massless case, but then the two results would disagree in their predictions

on the bending of light by the Sun. Hence the discontinuity as mg → 0 seems to

have inescapable physical consequences and is commonly referred to as the van Dam-

Veltmann-Zacharov (vDVZ) discontinuity of massive gravity in the literature.

To see the incompatibility of the massless limit of the Pauli-Fierz model of

massive gravity with 4D Einstein gravity from the perspective of the an effective

choice of gauge, it is instructive to examine the solution for the metric perturbations

of the 4D Einstein-Hilbert action (Setting mg = 0 in the action of (4.1)). The

linearized Einstein field equations are

Tµν = M
2 [

∂µ∂
αhαν + ∂ν∂

αhαµ −�4hµν − ∂µ∂νh
α
α − ηµν(∂

α∂βhαβ −�4h
α
α)
]

(4.19)

These equations emerge from a generally covariant theory and contain a gauge free-

dom. In order to obtain the solution for the metric perturbations we must fix the

gauge. We make a gauge choice

∂µhµν − ξ∂νh = 0 (4.20)

in terms of the free parameter ξ. This gauge choice, as was previously mentioned, is

equivalently (4.4) of the massive theory when the Fourier transform of (4.20) is taken.

Using this choice of gauge and taking the Fourier transforms, the solution to
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(4.19) for the metric and scalar perturbations are given by

h̃4D
µν (p) = − 1

M
2
p2

{
T̃µν −

1

2

(
ηµν −

(1− 2ξ)

(1− ξ)

pµpν

p2

)
T̃

}
h̃α 4D

α (p) =
1

2(1− ξ)
· T̃

M
2
p2

(4.21)

The choice of free parameter ξ = 1/2 corresponds to the harmonic gauge under which

the pµpν term vanishes and we obtain the solution for the metric perturbations given

by (4.15). Notice that when the choice of gauge parameter ξ = 1 is made, the scalar

and pµpν terms diverge and we get non-sensible solutions for the metric and scalar

perturbations. Therefore, one can conclude that for the parameter choice ξ = 1,

which in the theory of massive gravity is the only allowable choice which gives rise

to a solution which has a stable vacuum state (no tachyons or ghosts), we obtain a

linear solution which does not transition over to that of 4D massless gravity in the

zero graviton mass limit.

It was pointed out by Vainshtein [32] that the above conclusion was reached

in the linear approximation to the full field equations of gravity. Thus, they have a

limited domain of validity. To find this domain, one ought to calculate the next-order

corrections to make sure they are small. A calculation based on the Schwarzschild

solution reveals that the correction to the gravitational potential due to a point source

of mass m is O(1/m4
g) and therefore singular in the limit mg → 0. One obtains [33]

V PF(r) =
4

3

1

8πM
2

m1m2

r

(
1 +O

(
m

M
2
m4

gr
5

))
(4.22)

Thus the linear approximation is only reliable in the regime

r � R , R =

(
m

M
2
m4

g

)1/5

(4.23)
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It was also shown in [32] (see the next chapter for a detailed discussion) that for

rm � r � R, where rm is the Schwarzschild radius, the potential is

V PF(r) =
1

8πM
2

m1m2

r

(
1 +O

(
m2

g

√
mr3

M

))
(4.24)

with mg sufficiently small (mgR . 1). In this regime, the massive potential has

a smooth limit as mg → 0 which coincides with the result from Einstein’s theory,

V 4D(r) (eq. (4.18)). Thus, there is no discontinuity when the correct expansion for a

physical quantity is performed. The extra degrees of freedom of the spin-2 field hPF
αβ

decouple in the massless limit mg → 0.

4.2 The Constrained Perturbative Expansion

In the previous section, we introduced a linearized theory of massive gravity initially

written in terms of free parameters. We obtained the solution for the metric pertur-

bations and examined the pole structure which severely constrained the values of the

parameters when one insists on a local theory which is free of tachyonic and ghost-like

states. Here, we present a generalized procedure of [46]. As was done in the previous

section, we introduce a two-parameter family of gauge-fixing type terms on the 4D

worldvolume. In addition to this brane contribution, we also include a gauge-fixing

type term in the bulk in terms of arbitrary bulk parameters. In the decoupling limit

and in the absence of the brane, these additional action contributions amount to or-

dinary gauge-fixing terms. We then proceed to explore the physical effects of these

parameters away from the two extremal limits (decoupling and absence of a brane).

We find that the graviton propagator in general has a well-defined decoupling limit

implying the absence of a vDVZ discontinuity. The graviton propagator exhibits the

expected crossover behavior and is found to be free of tachyonic asymptotic states.
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The DGP solution (2.51), [8] of a delta-function type brane in (D = 5) corresponds

to a set of measure zero in our parameter space.

The DGP model describes a 3-brane on the boundary of a five-dimensional

bulk-space Σ. The action is

SDGP = M3

∫
Σ

d4xdy
√
−G R(5) + M

2
∫

∂Σ

d4x
√
−g R(4) (4.25)

where R(5), (R(4)) is the five- (four-) dimensional Ricci scalar. We adopt the standard

conventions ηAB = diag[+−−−−] ; A, B = 0, . . . , 3, y ; µν = 0, . . . , 3 ; i, j = 1, 2, 3.

Upon varying (4.25), one arrives at the DGP field equations, which are

M3G
(5)
AB + M

2
G(4)

µν δµ
Aδν

Bδ(y) = Tµνδ
µ
Aδν

Bδ(y) (4.26)

with the linearized solution given by

h̃µν(p, y) = − 1

M
2
(p2 + 2mbp)

{
T̃µν −

1

3

(
ηµν +

pµpν

2mbp

)
T̃

}
e−py

h̃α
α =

T̃

6M
2
mbp

e−py = h̃y
y (4.27)

which is written in terms of the 4D Euclidean momentum and graviton mass

p2 = −pµpµ = −p2
0 + p2

i = p2
4 + p2

i

mb = M3/M
2

(4.28)

The solution bears a striking resemblance to that of PF massive gravity presented

in the previous section where the factor of 1/3 instead of the Einstein factor of 1/2

signals the existence of a vDVZ discontinuity. In the decoupling limit (mb → 0),

4D Einstein gravity is not recovered and we do not obtain sensible dynamics for the
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longitudinal term with tensor structure of the form pµpν . Although the pµpν term

does not contribute at linear level, it does enter nonlinear diagrams.

Generalizing [46], we define a Constrained DGP Action of the form

ScDGP = SDGP + S(5) + S(4) (4.29)

where SDGP is the DGP action given by (4.25) and S(4) and S(5) are gauge-fixing terms

in the decoupling limit (mb → 0) and absence of brane (mb →∞), respectively. Away

from these two limits (M, M 6= 0), these additional terms no longer simply fix the

gauge; they alter the boundary conditions.

We start in the bulk by defining S(5) as follows

S(5) = M3

∫
Σ

d4xdy
√
−G

[
B2

5

2γ
+

B2
µ

2α

]
(4.30)

with

Bµ ≡ ∂µh
y
y + a∂µh

α
α − b∂αhαµ

By ≡ ∂µhµy (4.31)

where α, γ, a, b are arbitrary parameters on which no bulk physical quantities should

depend. In the absence of the brane, eq. (4.30) amounts to standard gauge-fixing

conditions. In general, the α, γ → 0 limit should be taken at the end of the calculation

to ensure that

Bµ → 0

By → 0 (4.32)

Next, we define the gauge-fixing term S(4) on the brane. For a brane of finite thickness,
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additional terms can arise on the brane world-volume and can survive in the limit of

the brane thickness tending to zero. In addition, we note that the boundary equations

receive no contribution from eq. (4.30) and are invariant under the 4D transformations

[46]

hµν |y=0 → hµν + ∂µζν + ∂νζµ|y=0 (4.33)

indicating a residual gauge freedom. With the above in mind, we choose an additional

brane action contribution

S(4) = λ M
2
∫

∂Σ

d4x
√
−g B2

ν (4.34)

where

Bν ≡ ∂µhµν + ξ∂νh
α
α (4.35)

and we assume λ > 0. These additional action contributions modify the DGP model

by explicitly breaking the 4D and 5D coordinate invariance. Adopting this modified

DGP model, we next obtain and solve the field equations. Varying (4.29), expanding

around a flat background, and Fourier transforming, the first-order Einstein equations

are as follows. In the bulk, the trace of the transverse component (55) is

h̃α
α −

pαpβ

p2
h̃αβ −

1

α

(
h̃y

y + ah̃α
α − b

pαpβ

p2
h̃αβ

)
= 0 (4.36)

The mixed components (µ5) are

i∂y(p
αh̃αµ − pµh̃

α
α) + p2

(
h̃µy −

1

p2
pµp

αh̃αy

)
+

1

γ
pµp

αh̃αy = 0 (4.37)

and the components parallel to the brane (µν) are

G(5)
µν = 0 (4.38)
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where

G(5)
µν = (p2 − ∂y∂

y)(h̃µν − ηµν h̃
α
α)− pµp

αh̃αν − pνp
αh̃αµ + pµpν(h̃

α
α + h̃y

y)

− ηµν(p
2h̃y

y − pαpβh̃αβ)

+
1

α

[
−b(pµpν h̃

y
y + apµpν h̃

α
α − bpνp

αh̃αµ) + aηµν(p
2h̃y

y + ap2h̃α
α − bpαpβh̃αβ)

]
+ ∂y(pν h̃µy + pµh̃νy − 2ηµνp

αh̃αy) (4.39)

From eqs. (4.36) and (4.37), we obtain

h̃µy = iγ
pµ

p2
∂y

(
h̃α

α −
pαpβ

p2
h̃αβ

)
h̃y

y = b
pαpβ

p2
h̃αβ − ah̃α

α + α

(
h̃α

α −
pαpβ

p2
h̃αβ

)
(4.40)

Plugging these expressions into (4.39) and assuming the solution is of the form

h̃AB(p, y) = h̃AB(p)e−py (4.41)

we may write G(5)
µν entirely in terms of the 4D metric perturbations. Dotting with the

momentum, we obtain

pµpνG(5)
µν = (1 + a− b)p2(p2h̃α

α − pαpβh̃αβ) (4.42)

implying the constraint on the parameters

1 + a− b = 0 (4.43)
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The vanishing of the divergence, pνG(5)
µν = 0, then implies

pν h̃µν = pµ
pαpβ

p2
h̃αβ (4.44)

This is not an additional constraint on the metric. On general grounds, one may

argue that pν h̃µν ∝ pµ, hence (4.44). Using these results, we arrive at the expression

G(5)
µν = (α− 2γ − 2a)(pµpν − ηµνp

2)

(
h̃α

α −
pαpβ

p2
h̃αβ

)
(4.45)

leading to a second constraint on the parameters,

α− 2γ − 2a = 0 (4.46)

At the boundary, the Israel junction condition at y = 0 yields

M
2G(4)

µν = T̃µν (4.47)

where

G(4)
µν = (p2 + 2mbp)(h̃µν − ηµν h̃

α
α)− (1− λ)(pµp

αh̃αν + pνp
αh̃αµ)

+ (1 + 2λξ)(pµpν h̃
α
α + ηµνp

αpβh̃αβ) + 2λξ2ηµνp
2h̃α

α

+ 2γmbp

(
ηµν −

pµpν

p2

)(
h̃α

α −
pαpβ

p2
h̃αβ

)
(4.48)

Eq. (4.47) can be solved for arbitrary parameters λ, ξ and γ. We obtain on the brane

h̃µν(p) = − 1

M
2
(p2 + 2mbp)

{
T̃µν −

(
ηµνC1 +

pµpν

p2
C2

)
T̃

}
(4.49)
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where

C1 =
2m2

b + 2λ(1 + ξ)(1− ξ + 2γ(1 + ξ))mbp + λ(1 + ξ)2p2

6m2
b + 4λ(1 + ξ)(1− 2ξ + 3γ(1 + ξ))mbp + 2λ(1 + ξ)2p2

C2 =
(1− 2λ(1 + ξ)(1 + 2γ(1 + ξ))mbp− λ(1 + ξ)(1 + 2ξ)p2

6m2
b + 4λ(1 + ξ)(1− 2ξ + 3γ(1 + ξ))mbp + 2λ(1 + ξ)2p2

(4.50)

Notice that the 4D metric perturbations, when convoluted with a conserved tensor

T̃ ′µν ,

h̃µνT̃
′µν = − 1

M
2
(p2 + 2mbp)

{
T̃µνT̃

′µν − C1T̃ T̃ ′
}

(4.51)

are still dependent on the parameters λ, ξ and γ. Examining the 4D momentum

dependence of the metric perturbations, we find in the large momentum regime (p �

mb),

h̃µνT̃
′µν ' − 1

M
2
p2

{
T̃µνT̃

′µν − 1

2
T̃ T̃ ′

}
(4.52)

recovering 4D Einstein gravity, and in the small momentum limit (p � mb),

h̃µνT̃
′µν ' − 1

2M3p

{
T̃µνT̃

′µν − 1

3
T̃ T̃ ′

}
(4.53)

exhibiting 5D behavior, as expected. Notice that in both limits, the transverse com-

ponents of the metric on the brane are independent of the parameters λ, ξ and γ.

In the intermediate range, the propagator smoothly switches from the 4D expres-

sion (4.52) to the 5D expression (4.53) as the momentum decreases. This crossover

behavior depends on the parameters λ, ξ and γ.

In the decoupling limit, mb → 0, the graviton propagator yields the standard

4D Einstein solution on the brane demonstrating the absence of a vDVZ discontinuity.

This is the case in the entire parameter space except for a set of measure zero defined
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by

ξ = −1 (4.54)

For this special choice, the parameters become true gauge parameters throughout the

entire range of momenta. We obtain

h̃µν(p, y) = − 1

M
2
(p2 + 2mbp)

{
T̃µν −

1

3

(
ηµν +

pµpν

2mbp

)
T̃

}
e−py

h̃y
y(p, y) =

1

6M
2
mbp

T̃ e−py

h̃µy(p, y) = 0 (4.55)

which is independent of α, γ. Also, the constraints Bµ = B5 = 0 for general α, γ show-

ing that they represent gauge-fixing conditions. This is the solution of the standard

DGP model (2.51), [8].

It should also be noted that for the particular choice of parameters λ = 1, ξ =

−1/2, we recover the model proposed by Gabadadze [46],

h̃µν(p, y) = − 1

M
2
(p2 + 2mbp)

{
T̃µν −

1

2
ηµν

(p2 + 4mbp)

(p2 + 6mbp)
T̃

}
e−py

h̃y
y =

pαpβ

p2
h̃αβ + (1

2
α + γ)

(
h̃α

α −
pαpβ

p2
h̃αβ

)
h̃µy = γ

pµ

p

(
h̃α

α −
pαpβ

p2
h̃αβ

)
(4.56)

in the α, γ → 0 limit.

We next wish to examine the poles of the propagator. Taking the γ → 0

limit, the transverse part of the propagator (4.51) can be written in a form explicitly

revealing its pole structure,

h̃µνT̃
′µν = − 1

M
2

[
1

(p2 + 2mbp)
T̃µνT̃

′µν − 1

3
C(p)T̃ T̃ ′

]
(4.57)
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where

C(p) =
1

p2 + 2mbp
+

1

2(c+ − c−)

[
c+

(p2 + c+mbp)
− c−

(p2 + c−mbp)

]
(4.58)

The location of the poles is determined by the coefficients

c± = c±(ξ, λ) =
1

1 + ξ

[
1− 2ξ ±

√
(1− 2ξ)2 − 3

λ

]
(4.59)

For p � mb, C(p) ≈ 3
2p2 and we recover the 4D expression (4.52). The poles are

significant for momenta p . mb. As was shown in [46], the p = −2mb pole lies on

the second Riemann sheet in the Minkowski four-momentum complex plane, where

p2 = s exp (−iπ), s = pµp
µ. This pole corresponds to a non-physical resonance and

indicates an intermediate, metastable state. This can be seen from the p = ±
√
−s

dependence of the propagator which indicates that the propagator is multi-valued

and the complex s-plane has two sheets with a branch cut on the positive real axis.

For the choice of p =
√
−s, we obtain a non-physical resonance and a propagator

which decays with the bulk coordinate.

The other two poles are located at p = −c±mb and depend on the parameters

ξ and λ. In the (ξ, λ)-plane, above the curve

λ =
3

(1− 2ξ)2
(4.60)

both poles lie on the negative real axis in the complex s-plane, since c± ∈ R. Moreover,

c± > 0 for −1 < ξ < 1/2. In this strip, the two poles are in the second Riemann sheet

(corresponding to the choice p =
√
−s) and are thus unphysical. In the special case

ξ = −1/2, λ = 1, the pole at p = −c−mb coincides with the pole at p = −2mb; this

is the Gabadadze model [46]. As we approach the curve (4.60), the two poles merge.
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Below the curve (4.60), c± become complex and c+ = c∗−. In this case the poles are no

longer on the real axis; we obtain a resonance with a momentum independent decay

width, in addition to the pole at p = −2mb.

As ξ → −1, the two poles p = c±mb become infinite and C(p) → (p2+2mbp)−1.

This is a singular case; dependence on the λ parameter disappears and the propagator

turns into the DGP expression (4.55) [8] which is plagued by the vDVZ discontinuity.

To the left of ξ = −1 (as well as for ξ > 1/2), both c± < 0; therefore, the poles

p = −c±mb are tachyons, signaling instability of the solution. Were we to choose

p = −
√
−s, instead, we would place these two poles on the second Riemann sheet,

but then the third pole at p = −2mb would turn into a tachyon.

The above results are illustrated by the two-dimensional plot of the (ξ, λ)

parameter space in Figure 4.2.

To summarize the results of this chapter, we first investigated a 4D theory of

massive gravity given in terms of free parameters. After obtaining the solution for the

metric perturbations, we proceeded to examine the parameter space and found that

the free parameters of our theory were completely constrained in order to arrive at

a theory which was free of tachyonic-type resonances and ghost-like states. We then

applied a similar mechanism to generalize the constrained perturbative model of [46]

and calculated the graviton propagator. The first-order contribution to the perturba-

tive expansion depended explicitly on parameters which are gauge parameters in the

bulk (in the absence of a brane) and on the brane (in the decoupling limit), respec-

tively. These parameters determine the details of the distance-dependent, crossover

behavior of the propagator and the position of the poles of the graviton propagator.

At low momenta, we obtained a 5D behavior whereas at high momenta we recovered

4D gravity demonstrating the absence of a vDVZ discontinuity. In addition, we found

a range of parameter values which yielded non-physical resonances corresponding to

intermediate, metastable states. For a special choice of parameters (representing a set
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Figure 4.2: The two-dimensional (ξ, λ) parameter space of the DGP model in 5-
dimensions. Above the curve (4.60), all poles of the propagator are real. Within the
strip −1 < ξ < 1/2, only unphysical resonances appear; outside, we have tachyons
(instability). Below the curve (4.60), we have one real pole and a resonance with
momentum independent decay width. The DGP model [8] is represented by the line
ξ = −1; the Gabadadze model [46] by the point ξ = −1/2, λ = 1.
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of measure zero in the parameter space), we recovered the standard DGP model [8].

This choice represented a set of measure zero in the parameter space which is plagued

by the vDVZ discontinuity.
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Chapter 5

The Schwarzschild Solution in

Pauli-Fierz Massive Gravity and

the DGP Model

This chapter contains a lightly revised version of a paper published in the journal

Modern Physics Letters A in 2004 by Chad Middleton and George Siopsis:

C. Middleton and G. Siopsis, The Schwarzschild Solution in the DGP Model.

Mod. Phys. Lett. A, Vol.19 (2004) pps. 2259-2266 [37].

In the previous chapter, we witnessed the vDVZ discontinuity of massive grav-

ity and the DGP Model in 5D. This discontinuity arises from the breakdown of the

perturbative expansion and is an artifact of the linear approximation to the full non-

linear field equations, thus signalling a limited domain of validity of the expansion.

We showed that this breakdown can be cured by adopting a constrained perturbative

expansion. Thus the theory was regulated by the inclusion of additional brane and

bulk action contributions which modified the linearized field equations and allowed

for a well-behaved solution.

In this chapter, we readdress the vDVZ discontinuity of the the Pauli-Fierz
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model and the 5D DGP Model for the case of the spherically symmetric solution

of a massive point source. The chapter is organized as follows. In section 5.1 we

adopt a spherically symmetric metric ansatz and obtain the full, non-linear field

equations for the case of a point source. By performing a perturbative expansion,

we arrive at the first-order field equations and explicitly witness the breakdown of

the linearized field. We then search for a solution in the small graviton mass regime

and show that by first taking the vanishing graviton mass limit and then keeping

all lowest-order contributions of the metric in the field equations, which amounts to

keeping second-order contributions in one of the fields, we arrive at such a solution.

In section 5.2, we then discuss the perturbative solution to the DGP field equations

in the case of a point source. By employing a spherically symmetric ansatz for the

metric, in addition to off-diagonal metric contributions, and keeping all lowest-order

contributions to the field equations, which again includes second-order terms in one

of the fields, we arrive at a lowest-order approximation to the full field equations

and obtain a solution. This interpolating solution is found explicitly, throughout its

domain of validity (both near and far from the Schwarzschild radius), on the brane

and in the bulk. We then examine the solution in the near and far regime and see

that the solution reduces to that of the 4D Einstein solution in the decoupling limit.

5.1 The Absence of the vDVZ Discontinuity in

Massive Gravity

In the first section of the previous chapter, we found that the most general 4D model

of linearized massive gravity is severely constrained to be that of the PF model if one

requires that the model be free of tachyonic and ghost-like states. After performing

a perturbative expansion, we arrived at the solution which is inevitably plagued by
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a vDVZ discontinuity. This solution in the linear approximation has a limited range

of validity; the perturbative solution breaks down in the limit of vanishing graviton

mass [32].

In this section, we return to the PF model of massive gravity. We wish to

obtain the spherically symmetric solution for a static point source valid in the small

graviton mass regime, which transitions over to the 4D Einstein gravity solution in

the massless limit. To arrive at such a solution, we will need to perform a different

expansion keeping up to second-order terms in the fields in this small graviton mass

regime.

The Pauli-Fierz field equations of massive gravity for a static point source are

M
2
[
(Rµν −

1

2
gµνR)− 1

2
m2

g(hµν − ηµνh
α
α)

]
= Tµν (5.1)

where Gµν = Rµν − 1
2
gµνR is the 4D Einstein tensor, R = Rα

α the 4D Ricci scalar,

and the stress-energy tensor for the massive point source is given by

Tµν = mδ0
µδ

0
νδ

3(~x) (5.2)

We choose the spherically symmetric metric ansatz

ds2 = −e2B(r̄)dt2 + e2C̄(r̄)dr̄2 + r̄2e2A(r̄)(dθ2 + sin2 θdφ2) (5.3)

which is the most general form of a spherically symmetric metric. General Relativ-

ity is unique, as compared with other physical theories, in that one simultaneously

defines coordinates and the metric as a function of those coordinates. Due to this

generic arbitrariness of defining coordinates, one is free to define new coordinates or

to perform coordinate transformations [57]. For the case of the above metric ansatz,
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it is convenient to make the following coordinate transformation

r = r̄eA (5.4)

together with the substitution

e2C̄ =
e2(C+A)

(1− rA′)2
(5.5)

where the prime denotes differentiation with respect to r. In 4D Einstein gravity

(mg = 0) under the above coordinatate transformation and substitution, the function

A(r) is completely eliminated from the field equations. One is left with the Einstein

field equations written only in terms of the functions B(r) and C(r). This implies

that the spherically symmetric metric ansatz

ds2 = −e2B(r)dt2 + e2C(r)dr2 + r2(dθ2 + sin2 θdφ2) (5.6)

is as general as (5.3) for the generally covariant theory. Alternatively stated, for the

generally covariant theory one can begin by plugging the metric ansatz (5.3) into

the Einstein field equations, perform the coordinate transformation and substitution

given by (5.4) and (5.5) and obtain field equations which are identical to those that are

obtained for the latter choice of metric given by (5.6). The vanishing of the function

A(r) under the coordinate transformation and substitution stated above is only true

for the generally covariant Einstein equations. When the Pauli-Fierz field equations

(4.1) are considered, the function A(r) remains when the above transformations are

performed.

We now wish to obtain the field equations in terms of the functions A(r), B(r),

and C(r). Plugging the metric ansatz (5.3) into the full non-linear field equations

and then performing the coordinate transformation and substitution given by (5.4)
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and (5.5), we obtain the following equations.

The tt and rr components of the full, non-linear field equations are given by

the relations

e2(B−C)

[
2

r
C ′ − 1

r2
(1− e2C)

]
+

1

2
m2

g

[
e2(C+A)

(1− rA′)2
+ 2e2A − 3

]
=

m

M
2 δ3(~x)[

2

r
B′ +

1

r2
(1− e2C)

]
+

1

2
m2

g

[
3− e2B − 2e2A

]
= 0 (5.7)

One arrives at the third unique field equation by taking the divergence of (5.1).

This yields the relation

−1

2
m2

g (∇µhµν −∇νh) = 0 (5.8)

In terms of the functions in the metric ansatz, we obtain the equation

− 2re−2(C+A)(1− rA′)2
[
B′e2B + 2A′e2A

]
+ 2e−2A

[
e2B + e2A +

e2(C+A)

(1− rA′)2
− 3

]
+ e−2(C+A)(1− rA′)2

[
3− e2B − 2e2A

]
(2 + rB′) + rB′e−2B

[
e2(C+A)

(1− rA′)2
+ 2e2A − 3

]
+ r

[
3− e2B − 2e2A

] d

dr

[
e−2(C+A)(1− rA′)2

]
= 0 (5.9)

As was stated in the first section of the previous chapter, this equation (5.9)

is responsible for the breakdown of the perturbative solution when only first-order

contributions are kept. To witness this breakdown for the spherically symmetric

solution for a massive point source, we expand to first-order in the fields. Under this

expansion, one obtains the following linearized field equations

1

r2

d

dr
(rC) +

1

2
m2

g

[
C +

1

r2

d

dr
(r3A)

]
=

m

M
2 δ3(~x) (5.10)

2

r2
(C − rB′) + m2

g (B + 2A) = 0 (5.11)
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and the divergence (5.9) yields the relation

C − 1

2
rB′ = 0 (5.12)

One can easily see that this additonal relation (5.12), which is absent in 4D Einstein

theory, is not compatible with (5.11) in the zero graviton mass limit (mg → 0), hence

the vDVZ discontinuity of the linear PF field equations. Using eqs.(5.10), (5.11), and

(5.12) and performing some algebra, the equations can be decoupled and brought into

the form

(∇2 −m2
g)B(r) =

2

3

m

M
2 δ3(~x)

A(r) =
1

2m2
gr

B′(r)− 1

2
B(r)

C(r) =
1

2
rB′(r) (5.13)

These equations yield the following solutions

B(r) = −4

3

(
m

8πM
2
r

)
e−mgr

C(r) =
2

3

(
m

8πM
2
r

)
(1 + mgr) e−mgr

A(r) =
2

3

(
m

8πM
2
r

)[
1 +

1

mgr
+

1

m2
gr

2

]
e−mgr (5.14)

As can be seen from the above solutions, A(r) diverges in the mg → 0 limit for

finite distance. One should of course demand that the functions A, B, C remain small

for a valid perturbative expansion. The failure of the solutions to remain small in

the massless graviton limit signals the breakdown of the perturbative expansion and

defines the limited domain of validity.

After witnessing the breakdown of the perturbative solution for the spherically
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symmetric solution in the small graviton mass regime, we wish to now arrive at a

solution which smoothly transitions into the weak-field Schwarzschild solution in the

vanishing graviton mass limit. We perform an expansion which differs from that of

the perturbative expansion [32] and is described as follows.

To lowest order in the small graviton mass limit, (5.10) and (5.11) reduce to

2∇2D(r) =
m

M
2 δ3(~x)

B′ −D′ = 0 (5.15)

where we wrote the equations in terms of the D(r) where C = rD′. As has already

been mentioned, the breakdown of the perturbative solution arises from the addition

constraining equation (5.12). As can easily be seen from (5.12), the field A(r) is

absent at linear order and leads to the incompatibility of (5.12) and (5.15). To arrive

at a set of compatible equations in this zero graviton mass limit, we shall keep all

lowest-order contributions in the field equations. This amounts to keeping second-

order terms in the field A(r) in addition to the first-order contributions of fields B(r)

and C(r). Performing this expansion on (5.9), we arrive at the consistant relation

C − 1

2
rB′ + (8rAA′ +

7

2
r2A′ 2 + 2r2AA′′) = 0 (5.16)

Solving (5.15) and (5.16), we obtain the solutions

B(r) = − m

8πM
2
r

C(r) =
m

8πM
2
r

A(r) =

√
4

13

(
m

8πM
2
r

)1/2

(5.17)

which yields the relation B +C = 0 which corresponds to the Schwarzschild solution.
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This solution is nonanalytic in the coupling constant, which is as expected since this

solution was not obtained from the perturbative expansion.

5.2 The Schwarzschild Solution in the DGP Model

In the previous section, we examined the vDVZ discontinuity of massive gravity in the

context of the spherically symmetric solution for a point mass. We explicitly witnessed

the breakdown of the perturbative solution in the limit of vanishing graviton mass.

To arrive at a solution in the small graviton mass regime which smoothly transitions

to the weak-field Schwarzschild solution of 4D massless gravity, we examined the field

equations in the vanishing mass limit and kept up to second-order field contributions.

In this regime, we found such a solution which differs from that of the perturbative

solution. In this section, we present a similar method to the generally covariant,

5D DGP model which also suffers from the vDVZ discontinuity of massive gravity.

We choose a spherically symmetric, 5 dimensional metric ansatz with additional off-

diagonal metric contributions. By keeping up to second-order field contributions

for the off-diagonal field, we arrive at a set of non-linear, coupled field equations

which can be solved. We obtain solutions for the fields which interpolate between

the near and far regime. In the far regime, the solution corresponds to that of the

linearized perturbative solution which has a 5D tensor structure and a 4D distance

dependence. In the near regime, the second-order, off-diagonal terms give a non-

vanishing contribution and one arrives at a solution which smoothly transitions to

the 4D Einstein theory in the decoupling limit.

The DGP model [8] describes a 3-brane on the boundary of a five-dimensional

bulk space Σ. The action is

S = M3

∫
Σ

d4xdy
√
−GR(5) + M

2
∫

∂Σ

d4x
√
−g R(4) (5.18)
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where R(5) (R(4)) is the five-(four-) dimensional Ricci Scalar. The solution to the

linearized equations bares a striking resemblence to the vDVZ solution of massive

gravity and shares the apparent discontinuity in the decoupling limit (M → 0).

Porrati [36] argued that this solution is only valid in a limited domain, as was the

vDVZ solution of massive gravity, and breaks down in the regime

r . rc , rc =

(
mM

2

18πM6

)1/3

(5.19)

when a static spherically-symmetric source of mass m is considered.

We seek to obtain a solution to the field equations for a static point source

with stress-energy tensor

TAB = mδ0
Aδ0

Bδ3(~x)δ(y) (5.20)

which is valid throughout the region rm . r . 1/mb, where

rm =
2m

8πM
2 (5.21)

is the Schwarzschild radius and

mb =
M3

M
2 (5.22)

is a crossover scale between four-dimensional and five-dimensional behavior.

We choose the ansatz for the metric

ds2 = −e2B(r,y)dt2 + e2C(r,y)δijdxidxj + 2Ai(r, y)dxidy + e2D(r,y)dy2 (5.23)

To arrive at a set of compatible field equations, we shall keep first-order contributions

in the diagonal components B, C, D, and up to second-order terms in the off-diagonal
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field ~A. It is also convenient to introduce the notation

~A = ~∇φ , Ψ′ =
1

r
(φ′)2 (5.24)

where prime denotes differentiation with respect to r, the distance from the point

source. A dot will be used for bulk derivatives (with respect to y).

First, let us discuss the lowest order contributions to the field equations in the

bulk. The yy component reads

2∂i∂
i(B + 2C) + ∂j(∂

jφ∂i∂
iφ)− ∂j(∂

iφ∂i∂
jφ) = 0 (5.25)

The mixed components are

∂i(Ḃ + 2Ċ)− ∂jφ∂j∂iφ̇ = 0 (5.26)

The spatial brane worldvolume components are

(∂i∂j − δij∂k∂
k)(B + C + D − φ̇)− δij(B̈ + 2C̈)

+∂k(∂
kφ∂i∂jφ)− ∂j(∂

kφ∂i∂kφ)− 1
2
δij

(
∂k(∂

kφ∂l∂
lφ)− ∂k(∂

lφ∂l∂
kφ)
)

= 0 (5.27)

and finally, the tt component is

∂i∂
i(2C + D − φ̇) + 3C̈ + 1

2

[
∂k(∂

kφ∂i∂
iφ)− ∂j(∂

kφ∂k∂
jφ)
]

= 0 (5.28)

In terms of the field Ψ (eq. (5.24)), the field equation (5.25) becomes linear,

B + 2C + Ψ = 0 (5.29)
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Then the mixed components (5.26) may be written as

∂iΨ̇ + ∂jφ∂j∂iφ̇ = 0 (5.30)

whose general solution is

φ′(r, y) =
α(y)

r2
+ β(r) (5.31)

We shall make use of gauge freedom to choose α(y) = 0, i.e., we demand φ (as well

as Ψ) be independent of y,

φ̇ = Ψ̇ = 0 (5.32)

This is true to lowest order; higher-order corrections will introduce a non-vanishing

φ̇ (and Ψ̇).

The remaining field equations (5.27) and (5.28) also become linear. They read,

respectively,

B + C + D + 1
2
Ψ = 0 (5.33)

∇2(2C + D + Ψ) + 3C̈ = 0 (5.34)

where we used (5.32).

Eqs. (5.29), (5.32) and (5.33) yield

C = −1
2
(B + Ψ) , D = −1

2
B (5.35)

Then eq. (5.34) becomes

B̈ +∇2B = 0 (5.36)

whose solution is easily obtained after Fourier-transforming the worldvolume coordi-

nates

B̃(p, y) = B̃(p, 0)e−py (5.37)
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The bulk behavior of the other fields is then found from (5.35),

C̃(p, y) = −1
2
B̃(p, 0)e−py − 1

2
Ψ̃(p) , D̃(p, y) = −1

2
B̃(p, 0)e−py (5.38)

Having obtained the functional dependence of all fields on y in terms of data on the

brane (y = 0), we now turn to solving the boundary field equations.

On the boundary (y = 0), the spatial brane components yield

2M3φ + M
2
(B + C) = 0 (5.39)

whereas the tt component is

6M3Ċ + 2M
2
∂i∂

iC + 2M3∂i∂
iφ = −mδ3(~x) (5.40)

The first term in eq. (5.40) may be dropped in the regime of interest, p � mb =

M3/M
2
. Eliminating C by using (5.35), we obtain

M
2∇2(B + Ψ)− 2M3∇2φ = mδ3(~x) (5.41)

Solving for B on the boundary, we find

B(r, 0) = −Ψ + 2mbφ−
m

4πM
2
r

(5.42)

Using this and (5.35) to eliminate B and C from the other boundary eq. (5.39), we

deduce

3mbφ−Ψ− m

8πM
2
r

= 0 (5.43)
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Differentiating with respect to r and using (5.24),

3mbφ
′ − 1

r
(φ′)2 +

m

8πM
2
r2

= 0 (5.44)

which can easily be solved for φ′ yielding,

φ′ =
3

2
mbr

(
1−

√
1 +

r3
c

r3

)
(5.45)

where rc is given by eq. (5.19). We also have

Ψ′ =
1

r
(φ′)2 =

m

8πM
2
r2

+
9

4
m2

br

(
1−

√
1 +

r3
c

r3

)
(5.46)

Differentiating eq.(5.42) with respect to r, we obtain the form of the field B on the

brane,

B′(r, 0) =
m

8πM
2
r2
− 3

4
m2

br

(
1−

√
1 +

r3
c

r3

)
(5.47)

Summarizing, eqs. (5.35), (5.45) and (5.47) provide the form of the metric on the

brane. This solution is valid everywhere on the brane (in the regime rm . r . 1/mb).

The solution in the bulk is given by eqs. (5.37) and (5.38) where the Fourier transform

B̃(p, 0) is deduced from (5.47).

Next, we examine the near and far regimes, seperated by the crossover distance

rc (eq. (5.19)).

In the far regime (r & rc), we have from (5.45),

φ =
m

24πM3r

{
1 +O(r3

c/r
3)
}

(5.48)
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and so (using eq. (5.24) or (5.46)),

Ψ = − m

128πM
2
r

{
r3
c

r3
+O(r6

c/r
6)

}
(5.49)

Notice that Ψ is of higher order. Therefore, eq. (5.35) implies to lowest order

C(r, y) = D(r, y) = −1

2
B(r, y) (5.50)

Using (5.47), we obtain

B(r, 0) = − m

6πM
2
r

{
1 +O(r3

c/r
3)
}

(5.51)

and after Fourier transforming,

B̃(p, 0) = − 2m

3M
2
p2

{
1 +O(p3/p3

c)
}

(5.52)

where pc ∼ 1/rc. The y dependence of the fields to lowest order is given by

C̃(p, y) = D̃(p, y) = −1

2
B̃(p, y) =

m

3M
2
p2

e−py (5.53)

Now taking the inverse Fourier transforms, we finally obtain for r & rc,

B>(r, y) = − m

6πM
2
r

{
1− 2

π
tan−1 y

r

}(
1 +O(r3

c/r
3)
)

C>(r, y) =
m

12πM
2
r

{
1− 2

π
tan−1 y

r

}(
1 +O(r3

c/r
3)
)

D>(r, y) =
m

12πM
2
r

{
1− 2

π
tan−1 y

r

}(
1 +O(r3

c/r
3)
)

φ>(r, y) =
m

24πM3r

(
1 +O(r3

c/r
3)
)

(5.54)

This solution corresponds to that of the standard perturbative expansion. Notice that
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in the decoupling limit (M3 → 0), φ diverges. But this is a limit beyond our approx-

imation above, because corrections become infinite (rc → ∞, from eq. (5.19)). We

next obtain the solution in the near regime which corresponds to the four-dimensional

Schwarzschild solution and is valid in the decoupling limit.

In the near regime (r . rc), we obtain from eqs. (5.45) and (5.46), respectively,

φ = −
√

mr

2πM
2

{
1 +O((r/rc)

3/2)
}

, Ψ = − m

8πM
2
r

{
1 +O((r/rc)

3/2)
}

(5.55)

In this case Ψ contributes to lowest order. Using (5.47), we deduce on the brane

B̃(p, 0) = − m

2M
2
p2

{
1 +O((pc/p)3/2)

}
(5.56)

The y-dependence to lowest order is given by

B̃(p, y) = − m

2M
2
p2

e−py

C̃(p, y) =
m

4M
2
p2

(1 + e−py)

D̃(p, y) =
m

4M
2
p2

e−py (5.57)

where we used (5.37) and (5.38). At y = 0, we recover the Schwarzschild solution

and therefore agreement with the standard Newtonian potential of massless gravity.

All fields are now non-singular in the decoupling limit M → 0. Fourier transforming,

in the regime rm . r . rc, we obtain from eqs. (5.55) and (5.57),

B<(r, y) = − m

8πM
2
r

{
1− 2

π
tan−1 y

r

}(
1 +O((r/rc)

3/2)
)

C<(r, y) =
m

8πM
2
r

{
1− 1

π
tan−1 y

r

}(
1 +O((r/rc)

3/2)
)

D<(r, y) =
m

16πM
2
r

{
1− 2

π
tan−1 y

r

}(
1 +O((r/rc)

3/2)
)
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φ<(r, y) = −
√

mr

2πM
2

(
1 +O((r/rc)

3/2)
)

(5.58)

To summarize the results of this chapter, we examined the spherically sym-

metric solution of a point mass in both the Pauli-Fierz model of massive gravity and

the 5D DGP model, both of which suffer from the vDVZ discontinuity at linear order.

Following closely to the work of Vainshtein [32] for the case of PF massive gravity in

the vanishing graviton mass regime, we kept all lowest-order field contributions which

includes second-order terms in one of the fields. In this small graviton mass regime,

we obtained a solution which corresponds to that of the 4D Einstein solution. For

the 5D DGP model, we derived a perturbative expansion which, as in the PF massive

case, also yields a solution which reduces to that of the Schwarzschild solution in a de-

coupling limit. By keeping second-order terms of the off-diagonal metric components

of our metric ansatz, we arrived at an explicit solution both on the brane and in the

bulk. On the brane, our solution interpolates between the near and far regimes which

are separated by the distance scale rc (eq. (5.19)); the critical radius rc found in [36] is

determined using this formalism. At distances below the critical radius rc, the pertur-

bative expansion yields the four-dimensional Schwarzschild solution, demonstrating

the absence of the van Dam-Veltman-Zakharov (vDVZ) discontinuity [30, 31]. In the

far regime at distances above the critical radius rc, our solution reduces to that found

in the linear perturbative expansion.
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Chapter 6

Conclusion

In Chapter 2, we introduced a generic model of Brane Induced Gravity for a 3-brane

residing in an infinite-volume Minkowski bulk-space. We limited our analysis to the

case of a delta-function type brane where the stress-energy tensor was chosen to re-

side on the brane and has only 4D worldvolume components. By fine-tuning the 4D

cosmological constant to exactly cancel the brane tension, we arrived at a Minkowski

brane background. In a simplest setup scenario, the model is that of a bulk-space

action of a D-dimensional Ricci scalar which generates D-dimensional Einstein equa-

tions. Due to the interactions of the bulk gravitons with the stress-energy tensor

confined to the brane, we added an induced 4D Ricci tensor to the bulk action and

arrived at the model proposed by Dvali-Gabadadze-Porrati, commonly referred to as

the DGP Model in the literature. By varying the action and perturbatively expanding

around the Minkowski background, we arrived at the linearized DGP field equations.

Choosing a D-dimensional harmonic gauge, we solved the field equations and obtained

the solution for the graviton and scalar propagator for the cases of D = 5 and D > 5.

For D = 5 dimensions, the solution gives rise to a 4D 1/r potential plus a logarithmic

repulsive term in the near regime which corresponds to tensor-scalar gravity. In the

far regime, we obtained a 5D Newtonian-like potential. For the case of D > 5 dimen-
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sions, we showed that the solution for graviton propagator on the brane has a tensor

structure and distance dependence of exactly 4D Einstein gravity. The bulk-space

exhibits the characteristic of infrared transparency where only the p2 = 0 mode gives

rise to non-zero interactions between matter placed in the bulk and matter localized

on the brane.

In Chapter 3, we generalized the model by allowing the 3-brane to have a finite

thickness extending into the bulk-space. This finite thickness can arise if the brane

is treated as a smooth soliton in the bulk or by transverse fluctuations of the brane

into the bulk-space which gives rise to an effective brane thickness. In the previous

chapter when we examined a delta-function type brane, we arrived at the solution for

the graviton propagator which has the exact tensor structure and distance dependence

of the 4D Einstein solution, however, this solution was obtained in a singular manner.

Giving the brane a finite thickness into the bulk regulates the model and allows for

a careful examination of the solution. Following closely to the delta-function case,

we expanded the DGP field equations around a Minkowski background and obtained

the solution for the graviton propagator. We first examined the pole structure and

found that the graviton propagator contains an infinite towers of massive gravitons

and tachyonic ghosts. In the limit of the fat brane becoming thin, the two terms

which gave rise to the massive and tachyonic poles become vanishingly small and

the solution for the graviton propagator reduces to that of 4D Einstein gravity, as

was found for the treatment of a delta-function type brane. We then analyzed the

tensor structure of the momentum dependent graviton propagator for this brane of

finite thickness. In the small momentum regime, the graviton propagator exhibited a

D-dimensional behavior, which was in contrast to the large momentum regime (above

the critical scale pc (eq. (3.51)) but well below the inverse brane width Λ), where the

contributions from the massive gravitons and tachyonic ghosts conspired to produce

a propagator on the brane whose tensor structure and distance dependence was that
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of four-dimensional Einstein gravity.

In Chapter 4, we examined a general theory of linearized 4D massive gravity

which allowed for all possible combinations of the metric perturbations, parameterized

by free parameters, which gives rise to local massive graviton contributions to the field

equations. After varying the action and obtaining the field equations, we expanded

around a Minkowski background and found the solution for the metric perturbations.

By examing the pole structure of the metric perturbations, we found that the free

parameters were severely constrained when one insists on a well-defined theory which

is free of tachyonic and ghost-like states; this brought us to the 4D Pauli-Fierz model

of massive gravity. We showed that the solution for the metric perturbations of the

PF model suffers from a van Dam-Veltman-Zakharov (vDVZ) discontinuity where

one does not arrive at the solution for 4D massless Einstein gravity in the limit of

vanishing graviton mass. We then examined the 5D DGP model which also suffers

from a vDVZ discontinuity at linear order, which is due to the breakdown of the

weak field itself. By including two additional linear action contributions to the DGP

model parameterized by bulk and brane free parameters, we arrived at a generalized,

regulated DGP model which cures the vDVZ discontinuity by changing the linearized

DGP field equations. We solved the coupled field equations and arrived at a solution

for the metric perturbations which were written in terms of the brane parameters. We

showed that the solution exhibits the expected crossover behavior and is independent

of the free parameters; in the near regime the metric perturbations have the exact ten-

sor structure and distance dependence of the 4D theory whereas in the far regime the

solution is that of a 5D theory. We rewrote the solution for the metric perturbations

revealing the pole structure and examined the parameter space. We found that the

region of the parameter space which yielded non-physical resonances corresponding

to intermediate, metastable states and is free of tachyonic-type resonances.

In Chapter 5, we readdressed the vDVZ discontinuity of the Pauli-Fierz model
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and the 5D DGP model by examining the spherically symmetric solution of a massive

point source in the respective setups. By choosing a spherically symmetric metric

ansatz, we obtained the full, non-linear field equations. Expanding to linear order,

we explicitly witnessed the breakdown of the perturbative expansion which does not

allow for a smooth transition to the 4D solution in the vanishing graviton mass limit.

In this chapter, we wished to obtain the solution in the small graviton mass regime

which does smoothly transition to the 4D solution and do so by keeping up to higher-

order field contributions. For the case of PF massive gravity in the vanishing graviton

mass regime, we kept all lowest-order field contributions which includes second-order

terms in one of the fields. Following [32], we obtained a solution in this small graviton

mass regime which corresponds to that of the 4D Einstein solution and showed that

the vDVZ discontinuity can thus be avoided by the inclusion of higher-order terms.

For the 5D DGP model, we adopted a spherically symmetric ansatz with the addition

of an off-diagonal metric contribution. We expanded the DGP field equations keeping

all first-order field contributions and up to second-order terms in the off-diagonal

field. We obtained the solution which is valid throughout the desired regime and

examined the solution in both distance regimes. In the near regime, this solution

yielded a 4D distance dependence and metric tensor and was found to reduce to the

4D Schwarzschild solution in the decoupling limit. In the far regime, the solution was

found to have a 5D tensor structure and a 4D distance dependence. In this regime,

the solution corresponds to that of the linear perturbative expansion.

The work that has been presented here amounts to a small part of the current

research on braneworld scenarios. After the discovery of the importance of D-branes

in ’95 by Polchinski [58], there has emerged a wealth of intensive research on Brane

Induced Gravity (BIG) and the Randall -Sundrum (RS) [6, 7] scenarios of warped

extra dimensions, both offering an attractive alternative to compactification. Brane

Induced Gravity is attractive in that it successfully offers an explanation for the
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weakness of gravity. Open strings, which represent spin-1 and -1/2 standard model

particles, are confined to the brane through Dirichlet boundary conditions whereas

closed strings, representing spin-2 gravitons, have no such imposed constraints. Spin-2

gravitons reside in both the bulk and on the brane and appear weak to a worldvolume

brane observer due to this spreading out.

Brane Induced Gravity also offers an alternative explanation to the recent

data which suggests that our universe is expanding at an accelerated rate. Instead

of hypothesizing dark energy to successfully account for the repulsive force driving

the acceleration of expansion of the universe, the large extra dimensional scenarios

modify the gravitational theories at large-distances with the gravitational effects of

the extra dimensions emerging on the distance scale of the cosmological horizons. As

a result, the Newtonian force law becomes inherently higher dimensional in the large

distance regime, thus, gravity gets weaker at cosmological distances. The cosmological

solution found in [11] describes a universe accelerated beyond the crossover scale. This

acceleration takes place despite the fact that there is no cosmological constant. Bulk

gravity sees its own induced curvature term on the brane as a cosmological constant

and accelerates [12]. We would like to extend our work further by exploring some

issues in cosmology.

We conclude this thesis by commenting that braneworld scenarios residing

in large extra dimensions are still in their infancy with much work remaining. As

was found in [22, 29] and discussed in Chapter 3, the flat space propagator exhibits

tachyonic poles with negative residues. The position of these poles and their existence

is UV regularization dependent. Currently, it is not clear whether these poles would

remain in a consistent UV completed theory [26]. It would be interesting to see if

these negative norm states of the fat brane scenario persist in a de Sitter background

and whether this could correspond to a true vacuum of the quantum theory.
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Appendix

The solution for the metric perturbations for 3-brane of finite thickness em-

bedded in a D-dimensional bulk (5.18) is found in terms of a scalar propagator which

satisfies the inhomogenous wave equation

[
MD−2 (p2 −�N)− (λ− 1) M

2
p2σΛ(y)

]
Gλ(p, y) = σΛ(y) (A1)

The solution to this equation is found by first solving the related Green function

equation

[
MD−2 (p2 −�N)− (λ− 1) M

2
p2σΛ(y)

]
Gλ(p, ~y, ~y ′) = δD−4(y − y′) (A2)

where

Gλ(p, y) =

∫
dD−4y′ σΛ(y′) Gλ(p, ~y, ~y ′) , λ =

3(D − 4)

(D − 2)
(A3)

Eq.(A2) can be rewritten into the form

[
1

yD−5

d

dy

(
yD−5 d

dy

)
− Λ2

y2
+ k2

λp
2

]
Gλ(p, ~y, ~y ′) = − 1

MD−2
δD−4(y − y′) (A4)

where we used explicitly written the bulk laplacian in hyperspherical coordinates with

Λ2 the bulk angular momentum operater. In addition, we have defined k2
λ in terms
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of step-function form of the density function σλ(y) (3.7)

k2
λ |y<1/Λ = (λ− 1)

M
2
ΛD−4

ωD−4MD−2
− 1 ' (λ− 1)

M
2
ΛD−4

ωD−4MD−2

k2
λ |y>1/Λ = −1 (A5)

for k2
λ both on the brane and in the bulk. To solve eq.(A4), we can expand the Green

function in terms of the hyperspherical harmonics [49]

Gλ(p, ~y, ~y ′) =
∑
l,m

Gλ(p, y, y ′)Y ∗
lm(Ω′)Ylm(Ω) (A6)

where Gλ(p, y, y ′) is the radial Green function. The hyperspherical harmonics Ylm(Ω)

are eigenfunctions of the bulk angular momentum operator Λ2 obeying the eigenvalue

equation [
Λ2 − l(l + d− 6)

]
Ylm(Ω) = 0 (A7)

Plugging the expansion for the Green function (A6) into eq.(A4) and using

the orthogonality conditions of hyperspherical harmonics given by

∫
dΩ Y ∗

l′m′(Ω) Ylm(Ω) = δl′lδm′m (A8)

we obtain an equation for the radial Green function

[
1

yD−5

d

dy

(
yD−5 d

dy

)
− l(l + (D − 6))

y2
+ k2

λp
2

]
Gλ(p, y, y ′) = − 1

MD−2

δ(y − y′)

yD−5

(A9)

At this point we’re left with solving this one-dimensional radial Green func-

tion equation. We can however simplify the equation further. We are interested in

obtaining the solution to the non-homogenous wave equation obtained by integrat-

ing the Green function over the density function (A3). Because of the hyperspherical
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symmetry of our chosen matter source dictated by the spread function σΛ(y), Gλ(p, y)

is easily shown to be dependent only on the radial Green function with l = m = 0.

Again, plugging the expansion for the Green function (A6) into (A3) and using or-

thogonality, we obtain

Gλ(p, y) =

∫
dD−4y′ σΛ(y′)Gλ(p, ~y, ~y ′) =

∫
dy′ y′

D−5
σΛ(y′)Gλ(p, y, y′) (A10)

where the radial Green function obeys the l = 0 equation

[
1

yD−5

d

dy

(
yD−5 d

dy

)
+ k2

λp
2

]
Gλ(p, y, y ′) = − 1

MD−2

δ(y − y′)

yD−5
(A11)

The radial Green function can be found explicitly in terms of Bessel functions.

Solving for (A11) on the brane and in the bulk and using the appropriate boundary

conditions, the solution is

Gλ(p, y, y ′) |y≤1/Λ =
iπ

4MD−2

(
1

yy ′

)(D−6)/2
1

Aλ

J(D−6)/2(kλpy<)

×
[
B(2)

λ H
(1)
(D−6)/2(kλpy>)− B(1)

λ H
(2)
(D−6)/2(kλpy>)

]
(A12)

inside the brane (y ≤ 1/Λ), and outside the brane,

Gλ(p, y, y′) |y>1/Λ = − 1

MD−2

(
1

yy′

)(D−6)/2
Λ

pAλ

J(D−6)/2(kλpy
′)K(D−6)/2(py) (A13)

where y<(y>) is the smaller (larger) of y and y′ and H
(1,2)
N (x) are Hankel functions

Aλ = kλK(D−6)/2(p/Λ)J(D−4)/2(kλp/Λ)−K(D−4)/2(p/Λ)J(D−6)/2(kλp/Λ)

B(1,2)
λ = kλK(D−6)/2(p/Λ)H

(1,2)
(D−4)/2(kλp/Λ)−K(D−4)/2(p/Λ)H

(1,2)
(D−6)/2(kλp/Λ)(A14)
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Notice that when λ = 0 , k2
λ becomes negative. The Green function equation

becomes

[
1

yD−5

d

dy

(
yD−5 d

dy

)
− κ2p2

]
G0(p, y, y ′) = − 1

MD−2

δ(y − y′)

yD−5
(A15)

where

κ2 |y≤1/Λ = −k2
0 |y≤1/Λ = 1 +

M
2
ΛD−4

ωD−4MD−2

κ2 |y>1/Λ = −k2
0 |y>1/Λ = 1 (A16)

The radial Green function is in terms of Modified Bessel functions. As before

we again solve for (A11) on the brane and in the bulk and use the appropriate

boundary conditions. The solution is

G0(p, y, y ′) |y≤1/Λ =
1

MD−2

(
1

yy′

)(D−6)/2
1

A0

I(D−6)/2(κpy<)

×
[
A0K(D−6)/2(κpy>) + B0I(D−6)/2(κpy>)

]
(A17)

inside the brane (y ≤ 1/Λ), and outside the brane,

G0(p, y, y ′) |y>1/Λ =
1

MD−2

(
1

yy′

)(D−6)/2
Λ

pA0

I(D−6)/2(κpy′)K(D−6)/2(py) (A18)

where

A0 = κI(D−4)/2(κp/Λ)K(D−6)/2(p/Λ) + I(D−6)/2(κp/Λ)K(D−4)/2(p/Λ)

B0 = κK(D−4)/2(κp/Λ)K(D−6)/2(p/Λ)−K(D−6)/2(κp/Λ)K(D−4)/2(p/Λ)

(A19)
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where IN(x) and KN(x) are the Modified Bessel functions.

We can now easily obtain the values for Gλ(p, y), G0(p, y) which are needed to

acquire the solutions for the metric and scalar perturbations h̃µν , h̃α
α. Plugging (A12

,A17) into eq. (A3), a short calculation yields the solutions for the non-homogeneous

wave equation.

The solutions to the non-homogeneous wave equation are

Gλ(p, y) |y≤1/Λ = − 1

(λ− 1)M
2
p2

[
1 +

1

Aλ

(
1

yΛ

)(D−6)/2

K(D−4)/2(p/Λ)J(D−6)/2(kλpy)

]

Gλ(p, y) |y>1/Λ = − 1

(λ− 1)M
2
p2
· kλ

Aλ

(
1

yΛ

)(D−6)/2

J(D−4)/2(kλp/Λ)K(D−6)/2(py) (A20)

G0(p, y) |y≤1/Λ =
1

M
2
p2

[
1− 1

A0

(
1

yΛ

)(D−6)/2

K(D−4)/2(p/Λ)I(D−6)/2(κpy)

]

G0(p, y) |y>1/Λ =
1

M
2
p2
· κ

A0

(
1

yΛ

)(D−6)/2

I(D−4)/2(κp/Λ)K(D−6)/2(py) (A21)
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