The Physics of Rainbows

Prof. Chad A. Middleton CMU Physics Seminar September 13, 2012

Charles A. Bennett, Principles of Physical Optics, $1^{\text {st }}$ ed., pps. 111-115.
Jearl D. Walker, "Multiple rainbows from single drops of water and other liquids", American Journal of Physics Vol. 44, No. 5, May 1976.

John A. Adam, "The mathematical physics of rainbows and glories",
Physics Reports 356 (2002), 229-365.

Quiz: The Physics of Rainbows

1. For the primary rainbow, what is the 'exterior' (largest observed angle) color?
a) Violet
b) Red
c) Yellow
d) Green
2. For the primary rainbow, what is the 'interior' (smallest observed angle) color?
a) Violet
b) Red
c) Yellow
d) Green
3. For the secondary rainbow, what is the 'exterior' color?
a) Violet
b) Red
c) Yellow
d) Green
4. For the secondary rainbow, what is the 'interior' color?
a) Violet
b) Red
c) Yellow
d) Green
5. Is the region between the primary and secondary rainbows dark or bright?
6. Is the interior region of the primary rainbow dark or bright?

What path should the lifeguard take to minimize her transit time?

$$
\bullet \longleftarrow \text { Lifeguard }
$$

$$
v_{i}>v_{t}
$$

Drowning swimmer

Smallest time interval?

Smallest time interval?

Smallest time interval?

Smallest time interval?

Smallest time interval?

$$
v_{i}>v_{t}
$$

Smallest time interval?

Smallest time interval?

Smallest time interval?

Plot of $t(x)$ vs x...

Time vs Position

The total time is...

$$
\begin{aligned}
t(x) & =t_{i}+t_{t} \\
& =\frac{\sqrt{a^{2}+x^{2}}}{v_{i}}+\frac{\sqrt{b^{2}+(c-x)^{2}}}{v_{t}}
\end{aligned}
$$

Smallest time interval?

To calculate the path of smallest time...

$$
\begin{aligned}
\frac{d}{d x} t(x) & =0 \quad \text { yields } \\
\frac{x}{\overline{a^{2}+x^{2}}} & =\frac{1}{v_{t}} \frac{(c-x)}{\sqrt{b^{2}+(c-x)^{2}}}
\end{aligned}
$$

Smallest time interval?

$n_{i} \sin \theta_{i}=n_{t} \sin \theta_{t}$
where $n \equiv \frac{c}{v}$

$$
n_{i}<n_{t}
$$

Fermat's Principle:

The actual path between two points taken by a beam of light is the one that is traversed in the least time.

When light enters a new medium, it's path obeys Snell's Law:

$$
n_{i} \sin \theta_{i}=n_{t} \sin \theta_{t}
$$

Geometrical setup...

Sunlight

- Rays of sunlight are nearly parallel to each other.
- Suspended $\mathrm{H}_{2} \mathrm{O}$ droplets are nearly spherical due to surface tension.

- θ_{d} is the deviation angle.
- α is the observed angle, measured from the anti-solar direction.

Geometrical setup...

Sunlight

- At certain observed angles, a particular color will dominate.
- This angle forms a cone around the anti-solar direction.
- All raindrops that lie on this cone can contribute to the rainbow
=> The rainbow is circular!

Primary Rainbow:

Light is incident at angle $\theta_{i} \ldots$

Primary Rainbow:

Primary Rainbow:

- Law of Reflection, same angle

Primary Rainbow:

 $1^{\text {st }}$ refraction, $2^{\text {nd }}$ reflection...- Law of Reflection, same angle - by geometry, same angle

Primary Rainbow:

$1^{\text {st }}$ refraction, $2^{\text {nd }}$ reflection, $3^{\text {rd }}$ refraction...

- by Snell's Law, same θ_{i}

Calculate the net deviation angle, $\theta_{d} \ldots$

Calculate the net deviation angle, $\theta_{d} \ldots$

Calculate the net deviation angle, $\theta_{d} \ldots$

The net deviation angle, θ_{d}, is

$$
\begin{gathered}
\theta_{d}=180^{\circ}+2 \theta_{i}-4 \theta_{t} \\
\text { or }
\end{gathered}
$$

$$
\theta_{d}\left(\theta_{i}\right)=180^{\circ}+2 \theta_{i}-4 \sin ^{-1}\left(\frac{\sin \theta_{i}}{n}\right)
$$

where we used Snell's Law.

An infinite number of parallel sunbeams hit the spherical raindrop, so which ones do we see?

Notice: the ray that has the angle.

Plot of θ_{d} vs $\sin ^{-1} \theta_{i} \ldots$

The backscattered rays cluster at the minimum deviation angle, yielding an enhanced brightness

The net deviation angle is...

$$
\theta_{d}=180^{\circ}+2 \theta_{i}-4 \sin ^{-1}\left(\frac{\sin \theta_{i}}{n}\right)
$$

Minimum deviation angle...

To calculate the
 minimum deviation angle...

$$
\frac{d \theta_{d}}{d \theta_{i}}=0 \quad \text { yields }
$$

$$
\sin \theta_{i}=\sqrt{\frac{4-n^{2}}{3}}
$$

Dispersion...

Different frequencies of light have different indices of refraction.

$$
\begin{aligned}
& n_{t, r}=1.331 \\
& n_{t, v}=1.344 \\
& \alpha_{r}=42.4^{\circ} \\
& \alpha_{v}=40.5^{\circ} \\
& \Delta \alpha=1.9^{\circ}
\end{aligned}
$$

Notice:

The 'outside' of the primary rainbow is red, whereas the 'inside' is violet!

Secondary Rainbow...

$$
\begin{aligned}
\theta_{d}= & \left(\theta_{i}-\theta_{t}\right)+ \\
& \left(180^{\circ}-2 \theta_{t}\right)+ \\
& \left(180^{\circ}-2 \theta_{t}\right)+ \\
& \left(\theta_{i}-\theta_{t}\right)
\end{aligned}
$$

The net deviation angle, θ_{d}, is...

$$
\begin{gathered}
\theta_{d}=360^{\circ}+2 \theta_{i}-6 \theta_{t} \\
\text { or }
\end{gathered}
$$

$$
\theta_{d}\left(\theta_{i}\right)=360^{\circ}+2 \theta_{i}-6 \sin ^{-1}\left(\frac{\sin \theta_{i}}{n}\right)
$$

where we again used Snell's Law.

Minimum deviation angle...

To calculate the
 minimum deviation angle...

$$
\begin{aligned}
& \frac{d \theta_{d}}{d \theta_{i}}=0 \quad \text { yields } \\
& \sin \theta_{i}=\sqrt{\frac{9-n^{2}}{8}}
\end{aligned}
$$

Secondary Rainbow...

$$
\begin{aligned}
& n_{t, r}=1.331 \\
& n_{t, v}=1.344
\end{aligned}
$$

$$
\begin{aligned}
\alpha_{r} & =50.3^{\circ} \\
\alpha_{v} & =53.8^{\circ} \\
\Delta \alpha & =3.5^{\circ}
\end{aligned}
$$

Notice:

The 'outside' of the secondary rainbow is violet, whereas the 'inside' is red!

Why is the interior region of the primary rainbow bright?

For the primary rainbow... one has backscattering for all angles in the regime:

$$
0 \leq \alpha \leq 42.4^{\circ}
$$

Your eye receives backscattered light of all wavelengths from the interior of the primary rainbow
=> Bright white light!

Why is the region between the primary and secondary rainbows dark?

For the primary rainbow... one has backscattering when

$$
0 \leq \alpha \leq 42.4^{\circ}
$$

For the secondary rainbow... one has backscattering when

$$
50.3^{\circ} \leq \alpha \leq 180^{\circ}
$$

One has ZERO scattering from one or two reflections when

$$
42.4^{\circ}<\alpha<50.3^{\circ}
$$

=> Alexander's dark band!

Is a $3^{\text {rd }}$ (or $l^{\text {th }}$) rainbow theoretically possible?

After allowing for linternal reflections, the net deviation angle is...

$$
\theta_{d}\left(\theta_{i}\right)=l\left(180^{\circ}\right)+2 \theta_{i}-2(l+1) \sin ^{-1}\left(\frac{\sin \theta_{i}}{n}\right)
$$

To calculate the minimum deviation angle...

$$
\frac{d \theta_{d}}{d \theta_{i}}=0 \quad \text { yields } \quad \sin \theta_{i}=\sqrt{\frac{(l+1)^{2}-n^{2}}{l(l+2)}}
$$

\Rightarrow The first 13 rainbows of water have been observed from a drop suspended in a spectrometer!*

Why are two rainbows sometimes visible in the sky, but one never sees a third (or fourth)?

For the tertiary rainbow $(l=3)$...

$$
\begin{aligned}
\alpha_{r} & =137.5^{\circ} \\
\alpha_{v} & =144.3^{\circ} \\
\Delta \alpha & =6.8^{\circ}
\end{aligned}
$$

So why don't you see it?

1. Each successive Cartesian ray is at a greater incident angle, therefore a reduction in intercepting cross-sectional area.
2. Larger $\Delta \alpha$ for each successive rainbow.
3. Loss of light due at each successive reflection.

