
Elliptical-like orbits on a warped 
spandex fabric 
Prof. Chad A. Middleton 
CMU Physics Seminar 

September 3, 2015 
 
 

 
 
 
 

Submitted to the American Journal of Physics 



M	



m	


pericenter 

apocenter 

~r
�

Kepler’s 1st Law..	


•  The planets move in elliptical orbits with 

the sun at one focus. 
	


Kepler’s 2nd Law..	


•  A line extending from the Sun to any 

planet sweeps out equal areas in equal 
times. 

Kepler’s 3rd Law..	



 
 

Kepler’s 3 Laws of planetary motion 
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•         describes the curvature of 

spacetime 
•         describes the matter & 

energy in spacetime 

Einstein’s theory of general relativity 

Sean M. Carrol, Spacetime and Geometry: An Introduction to 
Einstein’s General Relativity (Addison Wesley, 2004)	


 
Matter tells space   

how to curve, 
space tells matter  

how to move. 
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Is there a 2D surface that will generate orbits 
that obey Kepler’s 3 laws? 

  
 
For a marble orbiting on a warped elastic 
fabric, how does the period of the orbit relate 
to the radial distance? 

  
 
Can one generate elliptical-like orbits on the 
warped elastic surface? 

  
 

*C.A. Middleton, “The 2D surfaces that generate Newtonian and general relativistic orbits with 
small eccentricities ”,  Am. J. Phys. 83 (7), 608-615 (2015) 

 
**C. A. Middleton and M. Langston, “Circular orbits on a warped spandex fabric”,   

Am. J. Phys. 82 (4), 287-294 (2014) 

The physics of the analogy… 

Sean M. Carrol, Spacetime and Geometry: An Introduction to 
Einstein’s General Relativity (Addison Wesley, 2004)	
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Outline 
•  A marble rolling on a cylindrically symmetric surface 

 (Lagrangian dynamics) 

•  The shape of the spandex fabric (Calculus of Variations) 

•  Small slope regime 
o  Angular separation between successive apsides 
o  Experiment 

•  Large slope regime 
o  Angular separation between successive apsides 
o  Experiment 

•  Elliptical-like orbits in GR 
 



A marble rolling on a cylindrically symmetric 
surface 
•  is described by a Lagrangian of the form.. 
 
 
 
•  Now, for the rolling marble.. 

 
Notice: 
•  The marble is constrained to reside on the fabric..   
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•  take the form… 
 * 
                

 
•  define the differential operator… 

•  * becomes… 
                               

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The Lagrange equations of motion 
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For elliptical-like orbits with small eccentricities… 
 
 
 
•  where     is the precession parameter 

•  Inserting the approximate solution into the 
equation of motion yields 

 
 
 
 
 
 
 
 
 
 
 

The equation of motion for a rolling marble on a 
cylindrically symmetric surface… 
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Technique: 
1.  Construct potential energy (PE) integral functional of 

spandex fabric. 
i.  Elastic PE of the spandex. 
ii.  Gravitational PE of the spandex. 
iii.  Gravitational PE of the central mass. 

 
2.  Apply Calculus of Variations. 

⇒  The elastic fabric-mass system will assume the shape 
which minimizes the total PE of the system. 

 
	



i. and iii. first considered in “Comment on “The shape of ‘the Spandex’ and orbits upon its surface”,  
 Am. J. Phys. 70 (10), 1056-1058 (2002)  

The slope of the spandex fabric 



The Euler-Lagrange equation can be integrated once and takes the form.. 

 
 
•  where we defined the parameter.. 
 

The slope of the spandex fabric 
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The Euler-Lagrange equation can be integrated once and takes the form.. 

 
 
•  where we defined the parameter.. 
 

The slope of the spandex fabric 
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The angular separation & the slope 
of the spandex fabric 

•  Angular separation 
between successive 
like-apsides 

•  The slope of the 
spandex fabric 

•  Small slope regime.. 
                                                    so 
•  Large slope regime.. 

    so 
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•  4 ft. diameter trampoline frame 
o  styrofoam insert for zero pre-stretch 
o  truck tie down around perimeter 

•  Camera mounted directly above, 
ramp mounted on frame. 

•  Position determined every 1/60 s 
and average radius, rave , 
calculated per        .  

•         from rmax to rmax can be 
measured. 

•       can be calculated via… 

Elliptical-like orbits on the spandex fabric 

��
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s
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3z00 + r0z000 The three orbits imaged here were found to have angular separations 
between successive apocenters of 
and eccentricities of   

�� = 213.5�, 225.7�, 223.9�

" = 0.31, 0.29, 0.31



•  For                   , the slope of the spandex 
surface takes the form… 

              . 

 
•  Plugging this into the equation 

determining the angular separation 
yields a theoretical value of… 

 
 

                                          
 

Elliptical-like orbits in the small slope regime 
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•  For                   , the slope of the spandex 
surface takes the form… 

 
 
•  Plugging this into the equation 

determining the angular separation 
yields a theoretical value of… 

                                         
 

Elliptical-like orbits in the large slope regime 
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Notice: 
•  For a large central mass and a very small average radial distance, the 

angular separation yields a limiting behavior 

 
 
•  when                           ,        ! 

Elliptical-like orbits in the large slope regime 
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The equation of motion for an object of mass m orbiting about a spherically 
symmetric object of mass M, in the presence of a cosmological constant (or 
vacuum energy), Λ..	



	

      * 	

	


	


	


•  define the differential operator.. 

•  * becomes.. 
	


	


 
 

Elliptical-like orbits with small eccentricities in GR 

r̈ +
GM

r2
� `2

r3
+

3GM`2

c2r4
� 1

3
⇤c2r = 0

�̇ =
`

r2

d

d⌧
=

`

r2
d

d�

d2r

d�2
� 2

r

✓
dr

d�

◆2

+
GM

`2
r2 � r +

3GM

c2
� ⇤c2

3`2
r5 = 0



The orbital equation of motion… 
 
 
 
For elliptical-like orbits with small eccentricities… 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Elliptical-like orbits with small eccentricities in GR 
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r0 < 6GM/c2 ⌘ rISCO

Case I: Λ = 0 
•  We find the solution, to 1st order in the eccentricity, when.. 

 
 
Notice:   
•  When                                           ,      becomes complex:   

 elliptical-like orbits not allowed!  
•  When               ,     &     become complex: no circular orbits.   

 
 
 
 
 
 
 
 
 
 
 

Precessing elliptical orbits in GR with small 
eccentricities 
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Case I: Λ = 0 
•  The angular separation between successive apocenters takes the form… 

    
       *           where 

 
•  expand about… 

           where 
  
•  * becomes… 
 

 
 
 
 
 
 
 
 
 
 
 

Precessing elliptical orbits in GR with small 
eccentricities 
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Case I: Λ = 0, The behavior of the angular separation…  
•  in GR, near the innermost stable circular orbit… 

 
 
•  of the marble, in the large slope regime… 

 
 
 
 

Notice: 
 
•  Both expressions diverge in the limit of vanishingly small distances. 
 
•  α plays the role of G/c2; both set the scale of their respective theories. 

 
 
 
 
 
 

Precessing elliptical orbits in GR with small 
eccentricities 
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Case II: Λ ≠ 0 
•  We find the solution, to 1st order in the eccentricity, when.. 

•  The angular separation between successive apocenters takes the form… 
 
 
 
 
 
 
 
 
 
 
 

Precessing elliptical orbits in GR with small 
eccentricities 
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Case II: Λ ≠ 0, The behavior of the angular separation…  
•  in GR, about a static, spherically symmetric massive object in the 

presence of a constant vacuum energy.. 
 
 

•  of the marble, in the small slope regime… 
 
 
 
 

Notice: 
•  The areal mass density, σ0, of the spandex fabric plays the role of a 

negative vacuum energy density, -ρ0, of spacetime. 
 
 
 
 
 
 

Precessing elliptical orbits in GR with small 
eccentricities 
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•  We find good agreement between theory and experiment for the angular 
separation between successive apsides,        .  

 
•   In the large slope regime,                      for small radii and large central mass. 
 
•           diverges in the limit of vanishing small distances for 

o  the marble in the large slope regime. 
o  a particle near the innermost stable circular orbit. 
 

•  The areal mass density, σ0, of the spandex fabric plays the role of a negative 
vacuum energy density, -ρ0, of spacetime. 

 

Conclusion 
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Consider a static, spherically 
symmetric, massive object… 
 
Embedding diagram (t = t0 , θ = π/2)..	


•  2D equatorial ‘slice’ of the 3D space at one 

moment in time	



 
 
 

Einstein’s theory of general relativity 

where 2GM/c2 = 1	
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Does a warped spandex fabric yield 
orbits that obey Kepler’s 3 laws?  



Small slope regime..	



	


 
Large slope regime… 

 
 

Circular orbits on a warped spandex fabric, 
revisited… 
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Chad A. Middleton and Michael Langston, “Circular orbits on a warped spandex fabric”,  
Am. J. Phys. 82 (4), 287-294 (2014) 



Elastic PE of a differential concentric ring of the fabric of unstretched 
width dr… 
 
 
 
•  Define the modulus of elasticity, E .. 
 
 
•  Integrating the differential segment over the whole fabric,  

 the total elastic PE of the fabric is… 

Elastic PE of the spandex fabric 
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Gravitational PE of a differential concentric ring of the fabric.. 

 
•  The mass of the differential ring is a constant under stretching.. 
 
 

 where       ,            are the unstretched, variable areal mass densities. 
  

•  Integrating the differential segment over the whole fabric,  
 the total gravitational PE of the fabric is.. 

Gravitational PE of the spandex fabric 
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Notice: 
•  we approximate the central mass as being point-like. 
 

Gravitational PE of the central mass 
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where we defined the functional.. 
 
 
 
To minimize the total PE, subject to the Euler-Lagrange eqn.. 

The total PE of the spandex-central mass 
system 
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The Euler-Lagrange equation takes the form.. 

•  which can be integrated.. 

•  where we defined the parameter.. 
 

The shape equation for the elastic fabric 
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