Elliptical-like orbits on a warped spandex fabric

Prof. Chad A. Middleton

CMU Physics Seminar
September 3, 2015

Kepler's 3 Laws of planetary motion

Kepler's $1^{\text {st }}$ Law..

- The planets move in elliptical orbits with the sun at one focus.

Kepler's $2^{\text {nd }}$ Law..

- A line extending from the Sun to any planet sweeps out equal areas in equal times.

Kepler's $3^{\text {rd }}$ Law..

$$
T^{2}=\left(\frac{4 \pi^{2}}{G}\right) \cdot \frac{r^{3}}{M}
$$

Einstein's theory of general relativity

$$
G_{\mu \nu}=\frac{8 \pi G}{c^{4}} T_{\mu \nu}
$$

- $G_{\mu \nu}$ describes the curvature of spacetime
- $T_{\mu \nu}$ describes the matter \& energy in spacetime

> Matter tells space how to curve, space tells matter how to move.

Sean M. Carrol, Spacetime and Geometry: An Introduction to Einstein's General Relativity (Addison Wesley, 2004)

The physics of the analogy...

Is there a 2D surface that will generate orbits that obey Kepler's 3 laws?

For a marble orbiting on a warped elastic fabric, how does the period of the orbit relate to the radial distance?

Can one generate elliptical-like orbits on the warped elastic surface?

Sean M. Carrol, Spacetime and Geometry: An Introduction to Einstein's General Relativity (Addison Wesley, 2004)

The physics of the analogy...

Is there a 2D surface that will generate orbits that obey Kepler's 3 laws? -> Not exactly!*

For a marble orbiting on a warped elastic fabric, how does the period of the orbit relate to the radial distance?

Can one generate elliptical-like orbits on the warped elastic surface?

Sean M. Carrol, Spacetime and Geometry: An Introduction to Einstein's General Relativity (Addison Wesley, 2004)

The physics of the analogy...

Is there a 2D surface that will generate orbits that obey Kepler's 3 laws?
-> Not exactly!*
For a marble orbiting on a warped elastic fabric, how does the period of the orbit relate to the radial distance?
-> See reference**

Can one generate elliptical-like orbits on the warped elastic surface?

Am. J. Phys. 82 (4), 287-294 (2014)

Sean M. Carrol, Spacetime and Geometry: An Introduction to Einstein's General Relativity (Addison Wesley, 2004)

The physics of the analogy...

Is there a 2D surface that will generate orbits that obey Kepler's 3 laws?
-> Not exactly!*
For a marble orbiting on a warped elastic fabric, how does the period of the orbit relate to the radial distance?
-> See reference**

Can one generate elliptical-like orbits on the warped elastic surface?
-> Yes, stay tuned!
*C.A. Middleton, "The 2D surfaces that generate Newtonian and general relativistic orbits with

Am. J. Phys. 82 (4), 287-294 (2014)

Sean M. Carrol, Spacetime and Geometry: An Introduction to Einstein's General Relativity (Addison Wesley, 2004)

Outline

- A marble rolling on a cylindrically symmetric surface (Lagrangian dynamics)
- The shape of the spandex fabric (Calculus of Variations)
- Small slope regime
- Angular separation between successive apsides
- Experiment
- Large slope regime
- Angular separation between successive apsides
- Experiment
- Elliptical-like orbits in GR

A marble rolling on a cylindrically symmetric surface

- is described by a Lagrangian of the form..

$$
L=\frac{1}{2} m\left(\dot{r}^{2}+r^{2} \dot{\phi}^{2}+\dot{z}^{2}\right)+\frac{1}{2} I \omega^{2}-m g z
$$

- Now, for the rolling marble..

$$
I=\frac{2}{5} m R^{2} \text { and } \omega^{2}=v^{2} / R^{2} \quad \text { so } \quad \frac{1}{2} I \omega^{2}=\frac{1}{5} m v^{2}
$$

Notice:

- The marble is constrained to reside on the fabric..

$$
z=z(r)
$$

The Lagrange equations of motion

- take the form...

$$
\begin{array}{r}
\left(1+z^{\prime 2}\right) \ddot{r}+z^{\prime} z^{\prime \prime} \dot{r}^{2}-r \dot{\phi}^{2}+\frac{5}{7} g z^{\prime}=0 \\
\dot{\phi}=\frac{5 \ell}{7 r^{2}}
\end{array}
$$

- define the differential operator...

$$
\frac{d}{d t}=\frac{5 \ell}{7 r^{2}} \frac{d}{d \phi}
$$

- * becomes...

$$
\left(1+z^{\prime 2}\right) \frac{d^{2} r}{d \phi^{2}}+\left(z^{\prime} z^{\prime \prime}-\frac{2}{r}\left(1+z^{\prime 2}\right)\right)\left(\frac{d r}{d \phi}\right)^{2}-r+\frac{7 g}{5 \ell^{2}} \cdot z^{\prime} r^{4}=0
$$

The equation of motion for a rolling marble on a cylindrically symmetric surface...

$$
\left(1+z^{\prime 2}\right) \frac{d^{2} r}{d \phi^{2}}+\left(z^{\prime} z^{\prime \prime}-\frac{2}{r}\left(1+z^{\prime 2}\right)\right)\left(\frac{d r}{d \phi}\right)^{2}-r+\frac{7 g}{5 \ell^{2}} \cdot z^{\prime} r^{4}=0
$$

For elliptical-like orbits with small eccentricities...

$$
r(\phi)=r_{0}(1-\varepsilon \cos (\nu \phi))
$$

- where ν is the precession parameter

$$
\nu \equiv \frac{360^{\circ}}{\Delta \phi}
$$

- Inserting the approximate solution into the equation of motion yields

$$
\nu=\sqrt{\frac{3 z_{0}^{\prime}+z_{0}^{\prime \prime} r_{0}}{z_{0}^{\prime}+z_{0}^{\prime 3}}}
$$

The slope of the spandex fabric

Technique:

1. Construct potential energy (PE) integral functional of spandex fabric.
i. Elastic PE of the spandex.
ii. Gravitational PE of the spandex.
iii. Gravitational PE of the central mass.
2. Apply Calculus of Variations.
\Rightarrow The elastic fabric-mass system will assume the shape which minimizes the total PE of the system.

The slope of the spandex fabric

The Euler-Lagrange equation can be integrated once and takes the form..

$$
r z^{\prime}\left[1-\frac{1}{\sqrt{1+z^{\prime 2}}}\right]=\alpha\left(M+\sigma_{0} \pi r^{2}\right)
$$

- where we defined the parameter..

$$
\alpha \equiv \frac{g}{2 \pi E}
$$

The slope of the spandex fabric

The Euler－Lagrange equation can be integrated once and takes the form．．

$$
r z^{\prime}\left[1-\frac{1}{\sqrt{1+z^{\prime 2}}}\right]=\underset{\sim}{\text { mass of }} \underset{\text { central object }}{\alpha\left(M+\sigma_{0} \pi r^{2}\right)} \quad \underbrace{\text { density }}_{\text {areal mass }} ⿵ 冂 䒑
$$

$$
\alpha \equiv \frac{g}{2 \pi E}
$$

The angular separation \& the slope of the spandex fabric

- Angular separation between successive like-apsides
- The slope of the spandex fabric
- Small slope regime..

$$
z^{\prime}(r) \ll 1 \quad \text { SO } \quad \frac{1}{\sqrt{1+z^{\prime 2}}}=1-\frac{1}{2} z^{\prime 2}+o\left(z^{\prime 4}\right)
$$

- Large slope regime..

$$
z^{\prime}(r) \gg 1 \quad \text { SO } \quad \frac{1}{\sqrt{1+z^{\prime 2}}}=\frac{1}{z^{\prime}} \frac{1}{\sqrt{1+1 / z^{\prime 2}}}=\frac{1}{z^{\prime}}\left(1-\frac{1}{2 z^{\prime 2}}+o\left(1 / z^{\prime 4}\right)\right)
$$

Elliptical-like orbits on the spandex fabric

- 4 ft . diameter trampoline frame
- styrofoam insert for zero pre-stretch
- truck tie down around perimeter
- Camera mounted directly above, ramp mounted on frame.
- Position determined every $1 / 60 \mathrm{~s}$ and average radius, $r_{\text {ave }}$, calculated per $\Delta \phi$.
- $\Delta \phi$ from $r_{\max }$ to $r_{\max }$ can be measured.
- $\Delta \phi$ can be calculated via...

$$
\Delta \phi=360^{\circ} \sqrt{\frac{z_{0}^{\prime}\left(1+z_{0}^{\prime 2}\right)}{3 z_{0}^{\prime}+r_{0} z_{0}^{\prime \prime}}}
$$

The three orbits imaged here were found to have angular separations between successive apocenters of $\Delta \phi=213.5^{\circ}, 225.7^{\circ}, 223.9^{\circ}$ and eccentricities of $\varepsilon=0.31,0.29,0.31$

Elliptical-like orbits in the small slope regime

- For $z^{\prime}(r) \ll 1$, the slope of the spandex surface takes the form...

$$
z^{\prime}(r) \simeq\left(\frac{2 \alpha}{r}\right)^{1 / 3}\left(M+\sigma_{0} \pi r^{2}\right)^{1 / 3}
$$

- Plugging this into the equation determining the angular separation yields a theoretical value of...

$$
\Delta \phi=220^{\circ}\left[1+\left(2 \alpha\left(M+\sigma_{0} \pi r^{2}\right) / r_{0}\right)^{2 / 3}\right]^{1 / 2}\left[1+\frac{1}{4} \frac{\sigma_{0} \pi r^{2}}{\left(M+\sigma_{0} \pi r^{2}\right)}\right]^{-1 / 2}
$$

Elliptical-like orbits in the large slope regime

- For $z^{\prime}(r) \gg 1$, the slope of the spandex surface takes the form...

$$
z^{\prime}(r) \simeq 1+\frac{\alpha M}{r}
$$

- Plugging this into the equation determining the angular separation yields a theoretical value of...

$$
\Delta \phi=360^{\circ} \sqrt{\frac{\left(1+\alpha M / r_{0}\right)}{\left(3+2 \alpha M / r_{0}\right)}\left[1+\left(1+\frac{\alpha M}{r_{0}}\right)^{2}\right]}
$$

Elliptical-like orbits in the large slope regime

Notice:

- For a large central mass and a very small average radial distance, the angular separation yields a limiting behavior

$$
\lim _{\alpha M / r_{0} \gg 1} \Delta \phi \simeq \frac{360^{\circ}}{\sqrt{2}} \cdot \frac{\alpha M}{r_{0}}
$$

- when $\alpha M / r_{0}>\sqrt{2}, \Delta \phi>360^{\circ}$!

Elliptical-like orbits with small eccentricities in GR

The equation of motion for an object of mass m orbiting about a spherically symmetric object of mass M, in the presence of a cosmological constant (or vacuum energy), Λ..

$$
\begin{array}{rlrl}
* \\
\ddot{r}+\frac{G M}{r^{2}}-\frac{\ell^{2}}{r^{3}}+\frac{3 G M \ell^{2}}{c^{2} r^{4}}-\frac{1}{3} \Lambda c^{2} r & =0 \\
\text { define the differential operator.. } & \dot{\phi} & =\frac{\ell}{r^{2}}
\end{array}
$$

$$
\frac{d}{d \tau}=\frac{\ell}{r^{2}} \frac{d}{d \phi}
$$

- * becomes..

$$
\frac{d^{2} r}{d \phi^{2}}-\frac{2}{r}\left(\frac{d r}{d \phi}\right)^{2}+\frac{G M}{\ell^{2}} r^{2}-r+\frac{3 G M}{c^{2}}-\frac{\Lambda c^{2}}{3 \ell^{2}} r^{5}=0
$$

Elliptical-like orbits with small eccentricities in GR

The orbital equation of motion...

$$
\frac{d^{2} r}{d \phi^{2}}-\frac{2}{r}\left(\frac{d r}{d \phi}\right)^{2}+\frac{G M}{\ell^{2}} r^{2}-r+\frac{3 G M}{c^{2}}-\frac{\Lambda c^{2}}{3 \ell^{2}} r^{5}=0
$$

For elliptical-like orbits with small eccentricities...

$$
r(\phi)=r_{0}(1-\varepsilon \cos (\nu \phi))
$$

Precessing elliptical orbits in GR with small eccentricities

Case I: $\Lambda=0$

- We find the solution, to $1^{\text {st }}$ order in the eccentricity, when..

$$
\begin{aligned}
& \ell^{2}=G M r_{0}\left(1-\frac{3 G M}{c^{2} r_{0}}\right)^{-1} \\
& \nu^{2}=1-\frac{6 G M}{c^{2} r_{0}}
\end{aligned}
$$

Notice: Innermost stable circular orbit

- When $r_{0}<6 G M / c^{2} \equiv r_{I S C O}, \nu$ becomes complex: elliptical-like orbits not allowed!
- When $r_{0}<3 G M / c^{2}, \nu \& \ell$ become complex: no circular orbits.

Precessing elliptical orbits in GR with small eccentricities

Case I: $\Lambda=0$

- The angular separation between successive apocenters takes the form...

$$
{ }^{*} \Delta \phi=360^{\circ}\left(1-\frac{r_{I S C O}}{r_{0}}\right)^{-1 / 2} \text { where } r_{I S C O} \equiv 6 G M / c^{2}
$$

- expand about...

$$
r_{0} \equiv r_{I S C O}+r \quad \text { where } \quad r \ll r_{I S C O}
$$

- * becomes...

$$
\lim _{r \ll 6 G M / c^{2}} \Delta \phi \simeq 360^{\circ} \sqrt{6} \cdot \sqrt{\frac{G M / c^{2}}{r}}
$$

Precessing elliptical orbits in GR with small eccentricities

Case I: $\Lambda=0$, The behavior of the angular separation...

- in GR, near the innermost stable circular orbit...

$$
\lim _{r \ll 6 G M / c^{2}} \Delta \phi \simeq 360^{\circ} \sqrt{6} \cdot \sqrt{\frac{G M / c^{2}}{r}}
$$

- of the marble, in the large slope regime...

$$
\lim _{r_{0} \ll \alpha M} \Delta \phi \simeq \frac{360^{\circ}}{\sqrt{2}} \cdot \frac{\alpha M}{r_{0}}
$$

Notice:

- Both expressions diverge in the limit of vanishingly small distances.
- α plays the role of G / c^{2}; both set the scale of their respective theories.

Precessing elliptical orbits in GR with small eccentricities

Case II: $\Lambda \neq 0$

- We find the solution, to $1^{\text {st }}$ order in the eccentricity, when..

$$
\begin{aligned}
& \ell^{2}=G r_{0}\left(1-\frac{3 G M}{c^{2} r_{0}}\right)^{-1}\left(M-2 \cdot \frac{4}{3} \pi r_{0}^{3} \cdot \rho_{0}\right) \\
& \nu^{2}=1-\frac{6 G M}{c^{2} r_{0}}-6\left(1-\frac{3 G M}{c^{2} r_{0}}\right) \frac{\frac{4}{3} \pi r_{0}^{3} \cdot \rho_{0}}{\left(M-2 \cdot \frac{4}{3} \pi r_{0}^{3} \cdot \rho_{0}\right)}
\end{aligned}
$$

- The angular separation between successive apocenters takes the form...
$\Delta \phi=360^{\circ}\left(1-\frac{6 G M}{c^{2} r_{0}}\right)^{-1 / 2}\left[1-6\left(\frac{1-3 G M / c^{2} r_{0}}{1-6 G M / c^{2} r_{0}}\right) \frac{\frac{4}{3} \pi r_{0}^{3} \cdot \rho_{0}}{\left(M-2 \cdot \frac{4}{3} \pi r_{0}^{3} \cdot \rho_{0}\right)}\right]^{-1 / 2}$

Precessing elliptical orbits in GR with small eccentricities

Case II: $\Lambda \neq 0$, The behavior of the angular separation...

- in GR, about a static, spherically symmetric massive object in the presence of a constant vacuum energy..
$\Delta \phi=360^{\circ}\left(1-\frac{6 G M}{c^{2} r_{0}}\right)^{-1 / 2}\left[1-6\left(\frac{1-3 G M / c^{2} r_{0}}{1-6 G M / c^{2} r_{0}}\right) \frac{\frac{4}{3} \pi r_{0}^{3} \cdot \rho_{0}}{\left(M-2 \cdot \frac{4}{3} \pi r_{0}^{3} \cdot \rho_{0}\right)}\right]^{-1 / 2}$
- of the marble, in the small slope regime...

$$
\Delta \phi=220^{\circ}\left[1+\left(2 \alpha\left(M+\sigma_{0} \pi r^{2}\right) / r_{0}\right)^{2 / 3}\right]^{1 / 2}\left[1+\frac{1}{4} \frac{\sigma_{0} \pi r^{2}}{\left(M+\sigma_{0} \pi r^{2}\right)}\right]^{-1 / 2}
$$

Notice:

- The areal mass density, σ_{o}, of the spandex fabric plays the role of a negative vacuum energy density, $-\rho_{o}$, of spacetime.

Conclusion

- We find good agreement between theory and experiment for the angular separation between successive apsides, $\Delta \phi$.
- In the large slope regime, $\Delta \phi>360^{\circ}$ for small radii and large central mass.
- $\Delta \phi$ diverges in the limit of vanishing small distances for
- the marble in the large slope regime.
- a particle near the innermost stable circular orbit.
- The areal mass density, σ_{o}, of the spandex fabric plays the role of a negative vacuum energy density, $-\rho_{o}$, of spacetime.

Einstein's theory of general relativity

Consider a static, spherically symmetric, massive object...

Embedding diagram ($t=t_{0}, \theta=\pi / 2$)..

- 2D equatorial 'slice' of the 3D space at one moment in time

$$
z(r)=2 \sqrt{\frac{2 G M}{c^{2}}\left(r-\frac{2 G M}{c^{2}}\right)}
$$

Does a warped spandex fabric yield orbits that obey Kepler's 3 laws?

Circular orbits on a warped spandex fabric, revisited...

Small slope regime..

$$
T^{3}=\left(\frac{28 \pi^{2}}{5 g}\right)^{3 / 2} \frac{1}{\sqrt{2 \alpha}} \cdot \frac{r^{2}}{\left(M+\pi \sigma_{0} r^{2}\right)^{1 / 2}}
$$

Large slope regime...

$$
T=\left(\frac{28 \pi^{2}}{5 g}\right)^{1 / 2} \cdot \frac{r}{(M \alpha+r)^{1 / 2}}
$$

Elastic PE of the spandex fabric

Elastic PE of a differential concentric ring of the fabric of unstretched width $d r$...

$$
d U_{e}=\frac{1}{2} \kappa\left(\sqrt{d r^{2}+d z^{2}}-d r\right)^{2}
$$

- Define the modulus of elasticity, E ..

$$
E=\frac{\kappa d r}{2 \pi r}
$$

- Integrating the differential segment over the whole fabric, the total elastic PE of the fabric is...

$$
U_{e}=\int_{0}^{R} \pi E \cdot r\left(\sqrt{1+z^{\prime 2}}-1\right)^{2} d r
$$

Gravitational PE of the spandex fabric

Gravitational PE of a differential concentric ring of the fabric..

$$
d U_{g, s}=d m_{s} g \cdot z
$$

- The mass of the differential ring is a constant under stretching..

$$
d m_{s}=\sigma_{0} \cdot 2 \pi r d r=\sigma\left(z^{\prime}\right) \cdot 2 \pi r \sqrt{d r^{2}+d z^{2}}
$$

where $\sigma_{0}, \sigma\left(z^{\prime}\right)$ are the unstretched, variable areal mass densities.

- Integrating the differential segment over the whole fabric, the total gravitational PE of the fabric is..

$$
U_{g, s}=\int_{0}^{R} 2 \pi \sigma_{0} g \cdot r z d r
$$

Gravitational PE of the central mass

$$
U_{g, M}=M g \cdot z(0)=-\int_{0}^{R} M g \cdot z^{\prime}(r) d r
$$

Notice:

- we approximate the central mass as being point-like.

The total PE of the spandex-central mass system

$$
U=U_{e}+U_{g, s}+U_{g, M}=\int_{0}^{R} f\left(z, z^{\prime} ; r\right) d r
$$

where we defined the functional..

$$
f\left(z, z^{\prime} ; r\right) \equiv \pi E \cdot r\left(\sqrt{1+z^{\prime 2}}-1\right)^{2}+2 \pi \sigma_{0} g \cdot r z-M g \cdot z^{\prime}
$$

To minimize the total PE, subject to the Euler-Lagrange eqn..

$$
\frac{\partial f}{\partial z}-\frac{d}{d r} \frac{\partial f}{\partial z^{\prime}}=0
$$

The shape equation for the elastic fabric

The Euler-Lagrange equation takes the form..

$$
\frac{d}{d r}\left[r z^{\prime}\left[1-\frac{1}{\sqrt{1+z^{\prime 2}}}\right]-\frac{M g}{2 \pi E}\right]=\frac{\sigma_{0} g}{E} \cdot r
$$

- which can be integrated..

$$
r z^{\prime}\left[1-\frac{1}{\sqrt{1+z^{\prime 2}}}\right]=\alpha\left(M+\pi \sigma_{0} r^{2}\right)
$$

- where we defined the parameter..

$$
\alpha \equiv \frac{g}{2 \pi E}
$$

