Newtonian and general relativistic orbits with small eccentricities on 2D surfaces

Prof. Chad A. Middleton
CMU Physics Seminar
February 6, 2014

Outline

- The elliptical orbits of Newtonian gravitation
- The 2D surfaces that generate Newtonian orbits with small eccentricities
- Precessing elliptical orbits of GR with small eccentricities
- The 2D surfaces that generate general relativistic orbits with small eccentricities

Einstein's theory of general relativity

$$
G_{\mu \nu}=\frac{8 \pi G}{c^{4}} T_{\mu \nu}
$$

- $G_{\mu \nu}$ describes the curvature of spacetime
- $T_{\mu \nu}$ describes the matter \& energy in spacetime

> Matter tells space how to curve, space tells matter how to move.

Sean M. Carrol, Spacetime and Geometry: An Introduction to Einstein's General Relativity (Addison Wesley, 2004)

Einstein's theory of general relativity

Consider a spherically-symmetric, non-rotating massive object...

Embedding diagram ($t=t_{0}, \theta=\pi / 2$)..

- 2D equatorial 'slice' of the 3D space at one moment in time

$$
z(r)=2 \sqrt{\frac{2 G M}{c^{2}}\left(r-\frac{2 G M}{c^{2}}\right)}
$$

Is there a warped 2D surface that will yield the orbits of planetary motion?

The Lagrangian in spherical-polar coordinates with a Newtonian potential

- is of the form..

$$
L=\frac{1}{2} m\left(\dot{r}^{2}+r^{2} \dot{\phi}^{2}\right)+\frac{G m M}{r}
$$

- where we set $\theta=\pi / 2$ and a dot refers to a time derivative.
- For the azimuthal-coordinate..

$$
\frac{\partial L}{\partial \phi}-\frac{d}{d t} \frac{\partial L}{\partial \dot{\phi}}=0 \quad \text { yields } \quad r^{2} \dot{\phi}=\ell \quad \text {-Kepler's } 2^{\text {nd }} \text { Law }
$$

The Lagrange equations of motion

- For the radial-coordinate..

$$
\frac{\partial L}{\partial r}-\frac{d}{d t} \frac{\partial L}{\partial \dot{r}}=0
$$

- yields the equation of motion for an object of mass m..

$$
\ddot{r}-\frac{\ell^{2}}{r^{3}}+\frac{G M}{r^{2}}=0
$$

- Using the differential operator..

$$
\frac{d}{d t}=\frac{\ell}{r^{2}} \frac{d}{d \phi}
$$

* can be written in the form..

The equation of motion

- For the radial-coordinate..

$$
\frac{d^{2} r}{d \phi^{2}}-\frac{2}{r}\left(\frac{d r}{d \phi}\right)^{2}-r+\frac{G M}{\ell^{2}} r^{2}=0
$$

- yields the conic sections..

- where $\ell^{2}=G M r_{0}$
- and ε is the eccentricity of the orbit.
http://www.controlbooth.com/threads/cyc-color-wash-using-fresnels.30704/

The radial equation of motion

- the exact solution..

$$
r(\phi)_{e x}=\frac{r_{0}}{(1+\varepsilon \cos \phi)}
$$

- for small eccentricities..

$$
r(\phi)_{a p p} \simeq r_{0}(1-\varepsilon \cos \phi)
$$

Planets	$r_{\mathrm{o}}(\mathrm{m})$	ε	\% error
Mercury	$5.79^{*} 10^{10}$	0.2056	4.227
Venus	$1.08^{*} 10^{10}$	0.0068	0.005
Earth	$1.50^{*} 10^{11}$	0.0167	0.028
Mars	$2.28^{*} 10^{11}$	0.0934	0.872
Jupiter	$7.78^{*} 10^{11}$	0.0483	0.233
Saturn	$1.43^{*} 10^{12}$	0.056	0.314
Uranus	$2.87^{*} 10^{12}$	0.0461	0.213
Neptune	$4.50^{*} 10^{12}$	0.01	0.01

$$
\begin{aligned}
\% \text { error } & =\frac{\left|r_{e x}-r_{a p p}\right|}{r_{e x}} * 100 \% \\
& =\varepsilon^{2} \cos \phi * 100 \%
\end{aligned}
$$

Notice:

- * yields an excellent approximation for the solar system planets!

Kepler's $3^{\text {rd }}$ Law

- Setting $\dot{r}=\ddot{r}=0$ and using $\dot{\phi}=2 \pi / T$ for circular orbits...

$$
T^{2}=\left(\frac{4 \pi^{2}}{G}\right) \cdot \frac{r^{3}}{M}
$$

Notice:

- Kepler's $3^{\text {rd }}$ Law is independent of m !

An object orbiting on a 2D cylindricallysymmetric surface

- is described by a Lagrangian of the form..

$$
L=\frac{1}{2} m\left(\dot{r}^{2}+r^{2} \dot{\phi}^{2}+\dot{z}^{2}\right)+\frac{1}{2} I \omega^{2}-m g z
$$

- Now, for the orbiting object..

$$
\begin{aligned}
I=\alpha m R^{2} \text { and } \omega^{2}=v^{2} / R^{2} \quad \text { so } \frac{1}{2} I \omega^{2}=\frac{1}{2} \alpha m v^{2} \\
\text { where } \left.\begin{array}{rl}
\alpha & =2 / 5 \text { for a rolling sphere, } \\
\alpha & =0 \quad \text { for a sliding object. }
\end{array} . \begin{array}{rl}
\\
\text { a }
\end{array}\right)
\end{aligned}
$$

- The orbiting object is constrained to reside on the surface..

$$
z=z(r)
$$

The Lagrange equations of motion

- For the azimuthal-coordinate..

$$
\frac{\partial L}{\partial \phi}-\frac{d}{d t} \frac{\partial L}{\partial \dot{\phi}}=0 \quad \text { yields } \quad r^{2} \dot{\phi}=\ell /(1+\alpha)
$$

- For the radial-coordinate..

$$
\frac{\partial L}{\partial r}-\frac{d}{d t} \frac{\partial L}{\partial \dot{r}}=0
$$

- yields the equation of motion for the orbiting object..

$$
\left(1+z^{\prime 2}\right) \ddot{r}+z^{\prime} z^{\prime \prime} \dot{r}^{2}-\frac{\tilde{\ell}^{2}}{r^{3}}+\tilde{g} z^{\prime}=0 \quad \text { where } \begin{aligned}
& \tilde{\ell} \equiv \ell /(1+\alpha) \\
& \tilde{g} \equiv g /(1+\alpha)
\end{aligned}
$$

The Lagrange equation of motion

Compare the equation of motion for the orbiting object..

$$
\left(1+z^{\prime 2}\right) \ddot{r}+z^{\prime} z^{\prime \prime} \dot{r}^{2}-\frac{\tilde{\ell}^{2}}{r^{3}}+\tilde{g} z^{\prime}=0
$$

- to the equation of motion for planetary orbits..

$$
\ddot{r}-\frac{\ell^{2}}{r^{3}}+\frac{G M}{r^{2}}=0
$$

* will NOT yield Newtonian orbits on ANY cylindricallysymmetric surface, except in the special case of circular orbits.

The Lagrange equation of motion

Compare the equation of motion for the orbiting object..

$$
\left(1+z^{\prime 2}\right) \ddot{r}+z^{\prime} z^{\prime \prime} \dot{r}^{2}-\frac{\tilde{\ell}^{2}}{r^{3}}+\tilde{g} z^{\prime}=0
$$

- to the equation of motion for planetary orbits..

$$
\ddot{r}-\frac{\ell^{2}}{r^{3}}+\frac{G M}{r^{2}}=0
$$

* will NOT yield Newtonian orbits on ANY cylindricallysymmetric surface, except in the special case of circular orbits.

The radial equation of motion

- Using the differential operator, the radial equation becomes..

$$
\left(1+z^{\prime 2}\right) \frac{d^{2} r}{d \phi^{2}}+\left[z^{\prime} z^{\prime \prime}-\frac{2}{r}\left(1+z^{\prime 2}\right)\right]\left(\frac{d r}{d \phi}\right)^{2}-r+\frac{\tilde{g}}{\tilde{\ell}^{2}} z^{\prime} r^{4}=0
$$

- For nearly circular orbits with small eccentricities..

$$
r(\phi)=r_{0}(1-\varepsilon \cos (\nu \phi))
$$

where $r_{0} \& \nu$ are parameters.

Notice:

- when $\nu=1$, stationary elliptical orbits
- when $\nu \neq 1$, precessing elliptical orbits.

The radial equation of motion

- We find the solution, to $1^{\text {st }}$ order in the eccentricity, when..

$$
\begin{aligned}
\tilde{\ell}^{2} & =\tilde{g} r_{0}^{3} z_{0}^{\prime} \\
z_{0}^{\prime}\left(1+z_{0}^{\prime 2}\right) \nu^{2} & =3 z_{0}^{\prime}+r z_{0}^{\prime \prime}
\end{aligned}
$$

For $z(r) \propto-\frac{1}{r^{n}} \ldots$

- Precessing elliptical orbits when $n<2$
- Stationary elliptical orbits, for certain radii, when $n<1$
- No stationary elliptical orbits when $n=1$!

The 2D surface that generates Newtonian orbits

- To find the 2D surface that yields stationary elliptical orbits with small eccentricities for all radii, solve...

$$
z^{\prime}\left(1+z^{\prime 2}\right)=3 z^{\prime}+r z^{\prime \prime}
$$

- The solution for the slope of the surface is..

$$
\frac{d z}{d r}=\sqrt{2}\left(1+\kappa r^{4}\right)^{-1 / 2}
$$

where κ is an arbitrary integration constant

Notice:

- * is independent of spin of orbiting object.
- When $\kappa=0$, * becomes the equation of an inverted cone with slope $\sqrt{2}$.

The 2D surface that generates Newtonian orbits

- Integrating yields the shape function...

$$
z(r)=-\sqrt{2}\left(-\frac{1}{\kappa}\right)^{1 / 4} F\left(\sin ^{-1}\left(-\kappa r^{4}\right)^{1 / 4},-1\right)
$$

- where $F(a, b)$ is an elliptic integral of the $1^{\text {st }} k i n d$.

Notice:

- This 2D surface will generate stationary elliptical orbits with small eccentricities for all radii!

Kepler's $3^{\text {rd }}$ Law

- Setting $\dot{r}=\ddot{r}=0$ and using $\dot{\phi}=2 \pi / T$ for circular orbits...

$$
T^{2}=\left(\frac{2 \sqrt{2} \pi^{2}}{\tilde{g}}\right) r \sqrt{1+\kappa r^{4}}
$$

- Notice that when $\kappa r^{4} \ll 1$..

$$
T^{2} \propto r \quad \text { - Kepler-like relation for that of an inverted cone. }
$$

- and when $\kappa r^{4} \gg 1$..

$$
T^{2} \propto r^{3} \text { - Kepler's } 3^{\text {rd }} \text { Law of planetary motion. }
$$

Precessing elliptical orbits in GR with small eccentricities

- The eqn of motion for an object orbiting about a non-rotating, spherically-symmetric object of mass M in GR is..

$$
\ddot{r}-\frac{\ell^{2}}{r^{3}}+\frac{G M}{r^{2}}+\frac{3 G M \ell^{2}}{c^{2} r^{4}}=0
$$

- where a dot refers to a derivative w.r.t. proper time.
- Using the differential operator, * becomes..

$$
\frac{d^{2} r}{d \phi^{2}}-\frac{2}{r}\left(\frac{d r}{d \phi}\right)^{2}-r+\frac{G M}{\ell^{2}} r^{2}+\frac{3 G M}{c^{2}}=0
$$

- we choose a solution of the form..

$$
r(\phi)=r_{0}(1-\varepsilon \cos (\nu \phi)) \quad \text { where } r_{0} \& \nu \text { are parameters. }
$$

Precessing elliptical orbits in GR with small eccentricities

- We find the solution, to $1^{\text {st }}$ order in the eccentricity, when..

$$
\begin{aligned}
& \ell^{2}=G M r_{0}\left(1-\frac{3 G M}{c^{2} r_{0}}\right)^{-1} \\
& \nu^{2}=1-\frac{6 G M}{c^{2} r_{0}}
\end{aligned}
$$

Planets	$r_{\mathrm{o}}(\mathrm{m})$	ε	$6 G M / \mathrm{c}^{2} r_{o}$
Mercury	$5.79^{*} 10^{10}$	0.2056	$1.53^{*} 10^{-7}$
Venus	$1.08^{*} 10^{10}$	0.0068	$8.19^{*} 10^{-7}$
Earth	$1.50^{*} 10^{11}$	0.0167	$5.90^{*} 10^{-8}$
Mars	$2.28^{*} 10^{11}$	0.0934	$3.88^{*} 10^{-8}$
Jupiter	$7.78^{*} 10^{11}$	0.0483	$1.14^{*} 10^{-8}$
Saturn	$1.43^{*} 10^{12}$	0.056	$6.19^{*} 10^{-9}$
Uranus	$2.87^{*} 10^{12}$	0.0461	$3.08^{*} 10^{-9}$
Neptune	$4.50^{*} 10^{12}$	0.01	$1.97^{*} 10^{-9}$

Notice:

- Deviation from closed elliptical orbits increases with decreasing r_{0}.
- When $r_{0}<6 G M / c^{2}, \nu$ becomes complex: elliptical orbits not allowed
- When $r_{0}<3 G M / c^{2}, \nu \& \ell$ become complex: no circular orbits.

The 2D surfaces that generates general relativistic orbits

- To find the 2D surface that yields precessing elliptical orbits with small eccentricities for all radii, solve...

$$
z^{\prime}\left(1+z^{\prime 2}\right) \nu=3 z^{\prime}+r z^{\prime \prime} \quad \text { with } \quad \nu=\sqrt{1-\frac{6 G M}{c^{2} r_{0}}}
$$

- The solution for the slope of the surface is..

$$
\frac{d z}{d r}=\sqrt{\frac{2+\beta}{1-\beta}} \cdot\left(1+\kappa r^{2(2+\beta)}\right)^{-1 / 2} \quad \text { where } \beta \equiv 6 G M / c^{2} r_{0}
$$

Notice:

- dependent on central mass, M, and average radius of orbit, r_{0}.
- depends on β in both overall factor and in the power.
- Slope diverges as $\beta \rightarrow 1$

Compare the 2D surfaces...

- Slope that generates Newtonian stationary elliptical orbits..

$$
\frac{d z}{d r}=\sqrt{2}\left(1+\kappa r^{4}\right)^{-1 / 2}
$$

- Slope that generates the GR precessing elliptical orbits...

$$
\frac{d z}{d r}=\sqrt{\frac{2+\beta}{1-\beta}} \cdot\left(1+\kappa r^{2(2+\beta)}\right)^{-1 / 2}
$$

where $\beta \equiv 6 G M / c^{2} r_{0}$

Notice:

- They agree when $\beta \rightarrow 0$.
- GR offers a tiny correction for the orbits of the solar system planets.

Planets	$r_{0}(\mathrm{~m})$	ε	β
Mercury	$5.79^{*} 10^{10}$	0.2056	$1.53^{*} 10^{-7}$
Venus	$1.08^{*} 10^{10}$	0.0068	$8.19^{*} 10^{-7}$
Earth	$1.50^{*} 10^{11}$	0.0167	$5.90^{*} 10^{-8}$
Mars	$2.28^{*} 10^{11}$	0.0934	$3.88^{*} 10^{-8}$
Jupiter	$7.78^{*} 10^{11}$	0.0483	$1.14^{*} 10^{-8}$
Saturn	$1.43^{*} 10^{12}$	0.056	$6.19^{*} 10^{-9}$
Uranus	$2.87^{*} 10^{12}$	0.0461	$3.08^{*} 10^{-9}$
Neptune	$4.50^{*} 10^{12}$	0.01	$1.97^{*} 10^{-9}$

