Newtonian and general relativistic orbits with small eccentricities on 2D surfaces

Prof. Chad A. Middleton CMU Physics Seminar February 6, 2014

Outline

- The elliptical orbits of Newtonian gravitation
- The 2D surfaces that generate Newtonian orbits with small eccentricities
- Precessing elliptical orbits of GR with small eccentricities
- The 2D surfaces that generate general relativistic orbits with small eccentricities

Einstein's theory of general relativity

$$G_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}$$

- $G_{\mu\nu}$ describes the *curvature of spacetime*
- $T_{\mu\nu}$ describes the matter & energy in spacetime

Matter tells space how to curve, space tells matter how to move.

Sean M. Carrol, *Spacetime and Geometry: An Introduction to Einstein's General Relativity* (Addison Wesley, 2004)

Einstein's theory of general relativity

Consider a *spherically-symmetric*, *non-rotating massive object*...

Embedding diagram ($t = t_0$, $\theta = \pi/2$)..

• 2D equatorial 'slice' of the 3D space at one moment in time

$$z(r) = 2\sqrt{\frac{2GM}{c^2}\left(r - \frac{2GM}{c^2}\right)}$$

Is there a warped 2D surface that will yield the orbits of planetary motion?

where $2GM/c^2 = 1$

The Lagrangian in spherical-polar coordinates with a Newtonian potential

• is of the form..

$$L = \frac{1}{2}m\left(\dot{r}^2 + r^2\dot{\phi}^2\right) + \frac{GmM}{r}$$

• where we set $\theta = \pi/2$ and a dot refers to a time derivative.

• For the azimuthal-coordinate..

$$\frac{\partial L}{\partial \phi} - \frac{d}{dt} \frac{\partial L}{\partial \dot{\phi}} = 0$$
 yields $r^2 \dot{\phi} = \ell$ -Kepler's 2nd Law

The Lagrange equations of motion

• For the radial-coordinate..

$$\frac{\partial L}{\partial r} - \frac{d}{dt}\frac{\partial L}{\partial \dot{r}} = 0$$

• yields the equation of motion for an object of mass *m*..

$$\ddot{r} - \frac{\ell^2}{r^3} + \frac{GM}{r^2} = 0$$

• Using the differential operator..

$$rac{d}{dt} = rac{\ell}{r^2} rac{d}{d\phi}$$
 , * can be written in the form..

The equation of motion

• For the radial-coordinate..

$$\frac{d^2r}{d\phi^2} - \frac{2}{r}\left(\frac{dr}{d\phi}\right)^2 - r + \frac{GM}{\ell^2}r^2 = 0$$

• yields the *conic sections*..

$$r(\phi) = \frac{r_0}{(1 + \varepsilon \cos \phi)}$$

-Kepler's 1st Law Circle

- where $\ell^2 = GMr_0$
- and ε is the *eccentricity* of the orbit.

http://www.controlbooth.com/threads/cyc-color-wash-using-fresnels.30704/ http://conic-sections-section.wikispaces.com/General+Infomation+Main

Hyperbola

parabola

ellipse

hyperbola

circle

The radial equation of motion

• the *exact* solution..

$$r(\phi)_{ex} = \frac{r_0}{(1 + \varepsilon \cos \phi)}$$

• for *small* eccentricities..

$$r(\phi)_{app} \simeq r_0(1 - \varepsilon \cos \phi)^*$$

Planets	$r_{\rm o}$ (m)	3	% error
Mercury	5.79*10 ¹⁰	0.2056	4.227
Venus	1.08*10 ¹⁰	0.0068	0.005
Earth	$1.50^{*}10^{11}$	0.0167	0.028
Mars	2.28*10 ¹¹	0.0934	0.872
Jupiter	7.78*10 ¹¹	0.0483	0.233
Saturn	1.43*10 ¹²	0.056	0.314
Uranus	$2.87^{*10^{12}}$	0.0461	0.213
Neptune	4.50 [*] 10 ¹²	0.01	0.01

$$\% \operatorname{error} = \frac{|r_{ex} - r_{app}|}{r_{ex}} * 100\%$$
$$= \varepsilon^2 \cos \phi * 100\%$$

Notice:

• * yields an *excellent* approximation for the solar system planets!

Kepler's 3rd Law

• Setting $\dot{r} = \ddot{r} = 0$ and using $\dot{\phi} = 2\pi/T$ for circular orbits...

$$T^2 = \left(\frac{4\pi^2}{G}\right) \cdot \frac{r^3}{M}$$

Notice:

• Kepler's 3rd Law is *independent* of *m*!

An object orbiting on a 2D cylindricallysymmetric surface

• is described by a Lagrangian of the form..

$$L = \frac{1}{2}m(\dot{r}^2 + r^2\dot{\phi}^2 + \dot{z}^2) + \frac{1}{2}I\omega^2 - mgz$$

• Now, for the orbiting object..

$$I = \alpha m R^2$$
 and $\omega^2 = v^2/R^2$ so $\frac{1}{2}I\omega^2 = \frac{1}{2}\alpha m v^2$

where $\alpha = 2/5$ for a rolling sphere, $\alpha = 0$ for a sliding object.

• The orbiting object is constrained to reside on the surface..

$$z = z(r)$$

The Lagrange equations of motion

• For the azimuthal-coordinate..

$$\frac{\partial L}{\partial \phi} - \frac{d}{dt} \frac{\partial L}{\partial \dot{\phi}} = 0 \quad \text{yields} \quad \textbf{r}$$

$$r^2 \dot{\phi} = \ell / (1 + \alpha)$$

• For the radial-coordinate..

$$\frac{\partial L}{\partial r} - \frac{d}{dt} \frac{\partial L}{\partial \dot{r}} = 0$$

• yields the equation of motion for the orbiting object..

$$(1+z'^2)\ddot{r}+z'z''\dot{r}^2 - \frac{\tilde{\ell}^2}{r^3} + \tilde{g}z' = 0 \quad \text{where} \quad \begin{array}{l} \tilde{\ell} \equiv \ell/(1+\alpha) \\ \tilde{g} \equiv g/(1+\alpha) \end{array}$$

The Lagrange equation of motion

Compare the equation of motion for the *orbiting object*..

$$(1+z'^2)\ddot{r} + z'z''\dot{r}^2 - \frac{\tilde{\ell}^2}{r^3} + \tilde{g}z' = 0$$

• to the equation of motion for *planetary orbits*..

$$\ddot{r} - \frac{\ell^2}{r^3} + \frac{GM}{r^2} = 0$$

* will NOT yield *Newtonian orbits* on ANY cylindricallysymmetric surface, *except* in the special case of circular orbits.

The Lagrange equation of motion

Compare the equation of motion for the orbiting object..

$$(1+z'^2)\ddot{r} + z'z''\dot{r}^2 - \frac{\tilde{\ell}^2}{r^3} + \tilde{g}z' = 0$$

• to the equation of motion for *planetary orbits*..

$$\ddot{r} - \frac{\ell^2}{r^3} + \frac{GM}{r^2} = 0$$

* will NOT yield *Newtonian orbits* on ANY cylindricallysymmetric surface, *except* in the special case of circular orbits.

• So, what about for *nearly* circular orbits?

The radial equation of motion

• Using the differential operator, the radial equation becomes..

$$(1+z'^2)\frac{d^2r}{d\phi^2} + [z'z'' - \frac{2}{r}(1+z'^2)]\left(\frac{dr}{d\phi}\right)^2 - r + \frac{\tilde{g}}{\tilde{\ell}^2}z'r^4 = 0$$

• For nearly circular orbits with small eccentricities..

$$r(\phi) = r_0(1 - \varepsilon \cos(\nu \phi))$$

where $r_0 \& \nu$ are parameters.

- when $\nu = 1$, *stationary* elliptical orbits
- when $\nu \neq 1$, *precessing* elliptical orbits.

The radial equation of motion

• We find the solution, to 1st order in the eccentricity, when..

$$\tilde{\ell}^2 = \tilde{g}r_0^3 z_0'$$
$$z_0'(1+z_0'^2)\nu^2 = 3z_0' + rz_0''$$

For $z(r) \propto -\frac{1}{r^n}$...

- *Precessing* elliptical orbits when n < 2
- *Stationary* elliptical orbits, for certain radii, when n < 1
- *No* stationary elliptical orbits when n = 1!

The 2D surface that generates Newtonian orbits

• To find the 2D surface that yields *stationary* elliptical orbits with small eccentricities for *all* radii, solve...

$$z'\left(1+z'^{2}\right) = 3z' + rz''$$

• The solution for the *slope* of the surface is..

$$\frac{dz}{dr} = \sqrt{2} \ (1 + \kappa r^4)^{-1/2}$$

where κ is an *arbitrary* integration constant

Notice:

- * is *independent* of spin of orbiting object.
- When $\kappa = 0$, * becomes the equation of an *inverted cone* with slope $\sqrt{2}$.

Gary D. White, "On trajectories of rolling marbles in cones and other funnels", Am. J. Phys. 81 (12), 890-898 (2013)

The 2D surface that generates Newtonian orbits

• Integrating yields the shape function...

$$z(r) = -\sqrt{2} \left(-\frac{1}{\kappa}\right)^{1/4} F(\sin^{-1}(-\kappa r^4)^{1/4}, -1)$$

• where *F*(*a*,*b*) is an *elliptic integral of the* 1st *kind*.

Notice:

• This 2D surface will generate *stationary* elliptical orbits with small eccentricities for *all* radii!

Kepler's 3rd Law

• Setting $\dot{r} = \ddot{r} = 0$ and using $\dot{\phi} = 2\pi/T$ for circular orbits...

$$T^2 = \left(\frac{2\sqrt{2}\pi^2}{\tilde{g}}\right)r\sqrt{1+\kappa r^4}$$

• Notice that when $\kappa r^4 \ll 1$..

 $T^2 \propto r$ - Kepler-like relation for that of an *inverted cone*.

• and when $\kappa r^4 \gg 1$..

 $T^2 \propto r^3\,$ - Kepler's 3rd Law of *planetary motion*.

Precessing elliptical orbits in GR with small eccentricities

• The eqn of motion for an object orbiting about a *non-rotating*, *spherically-symmetric object* of mass *M* in GR is..

$$\ddot{r} - \frac{\ell^2}{r^3} + \frac{GM}{r^2} + \frac{3GM\ell^2}{c^2r^4} = 0^*$$

- where a dot refers to a derivative w.r.t. *proper time*.
- Using the differential operator, * becomes..

$$\frac{d^2r}{d\phi^2} - \frac{2}{r}\left(\frac{dr}{d\phi}\right)^2 - r + \frac{GM}{\ell^2}r^2 + \frac{3GM}{c^2} = 0$$

• we choose a solution of the form..

$$r(\phi) = r_0(1 - \varepsilon \cos(\nu \phi))$$
 where $r_0 \& \nu$ are parameters

Precessing elliptical orbits in GR with small eccentricities

• We find the solution, to 1st order in the eccentricity, when..

$\ell^2 = GMr_0 \left(1 - \right)$	$\frac{3GM}{c^2r_0}\bigg)^{-1}$
$\nu^2 = 1 - \frac{6GM}{c^2 r_0}$	

Planets	$r_{\rm o}$ (m)	3	$6GM/c^2r_o$
Mercury	5.79*10 ¹⁰	0.2056	$1.53^{*}10^{-7}$
Venus	1.08*10 ¹⁰	0.0068	8.19*10 ⁻⁷
Earth	$1.50^{*}10^{11}$	0.0167	$5.90^{*}10^{-8}$
Mars	2.28*10 ¹¹	0.0934	$3.88^{*10^{-8}}$
Jupiter	7.78*10 ¹¹	0.0483	$1.14^{*}10^{-8}$
Saturn	1.43*10 ¹²	0.056	6.19*10 ⁻⁹
Uranus	$2.87^{*10^{12}}$	0.0461	$3.08*10^{-9}$
Neptune	$4.50^{*10^{12}}$	0.01	$1.97^{*}10^{-9}$

- Deviation from *closed* elliptical orbits *increases* with *decreasing* r_0 .
- When $r_0 < 6GM/c^2$, ν becomes complex: *elliptical* orbits not allowed
- When $r_0 < 3GM/c^2$, $\nu \& \ell$ become complex: no circular orbits.

The 2D surfaces that generates general relativistic orbits

• To find the 2D surface that yields *precessing* elliptical orbits with small eccentricities for *all* radii, solve...

$$z'(1+z'^2)
u = 3z' + rz''$$
 with $u = \sqrt{1 - \frac{6GM}{c^2 r_0}}$

• The solution for the *slope* of the surface is..

$$\frac{dz}{dr} = \sqrt{\frac{2+\beta}{1-\beta}} \cdot (1+\kappa r^{2(2+\beta)})^{-1/2}$$

where
$$\beta \equiv 6GM/c^2r_0$$

- dependent on *central mass*, M, and *average radius* of orbit, r_o .
- depends on β in both overall factor and in the power.
- Slope diverges as $\beta \to 1$

Compare the 2D surfaces...

• Slope that generates Newtonian *stationary* elliptical orbits..

$$\frac{dz}{dr} = \sqrt{2} \ (1 + \kappa r^4)^{-1/2}$$

• Slope that generates the GR *precessing* elliptical orbits...

$$\frac{dz}{dr} = \sqrt{\frac{2+\beta}{1-\beta}} \cdot (1+\kappa r^{2(2+\beta)})^{-1/2}$$

where $\beta \equiv 6GM/c^2r_0$

- They agree when $\beta \rightarrow 0$.
- GR offers a *tiny* correction for the orbits of the solar system planets.

Planets	$r_{\rm o}$ (m)	3	β
Mercury	5.79*10 ¹⁰	0.2056	$1.53^{*}10^{-7}$
Venus	1.08*10 ¹⁰	0.0068	8.19*10 ⁻⁷
Earth	$1.50^{*}10^{11}$	0.0167	$5.90^{*}10^{-8}$
Mars	2.28*10 ¹¹	0.0934	$3.88^{*10^{-8}}$
Jupiter	7.78*10 ¹¹	0.0483	$1.14^{*}10^{-8}$
Saturn	$1.43^{*}10^{12}$	0.056	6.19*10 ⁻⁹
Uranus	$2.87^{*10^{12}}$	0.0461	$3.08^{*}10^{-9}$
Neptune	4.50*10 ¹²	0.01	1.97 [*] 10 ⁻⁹