The orbital motion of marbles on warped 2D surfaces

Chad A. Middleton, Ph.D. Brown Bag Seminar November 7, 2014

Outline

Gravitation & orbital motion

- Newtonian gravitation
- Kepler's 3 laws
- Einstein's theory of general relativity
- Circular orbits on a warped spandex fabric
- Elliptical-like orbits on a spandex surface
- Newtonian and general relativistic orbits with small eccentricities on 2D surfaces

Newton's universal law of gravitation

Successes

Described the motion of massive bodies... ...on earth ...in the heavens•

Kepler's 3 laws of planetary motion

Kepler's 1st law:

• The planets move in *elliptical orbits* with the Sun at one focus.

Kepler's 2nd law:

• A line drawn from the Sun to any planet sweeps out *equal areas in equal times*.

Kepler's 3rd law:

• The *period of the planet squared* is proportional to the *radius of its orbit cubed*

or

$$T^2 = \left(\frac{4\pi^2}{G}\right) \cdot \frac{r^3}{M}$$

Notice:

• • Kepler's 3rd Law is *independent* of *m*!

Einstein's theory of general relativity

$$G_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}$$

- $G_{\mu\nu}$ describes the *curvature of spacetime*
- $T_{\mu\nu}$ describes the matter & energy in spacetime

Matter tells space how to curve, space tells matter how to move.

Sean M. Carrol, *Spacetime and Geometry: An Introduction to Einstein's General Relativity* (Addison Wesley, 2004)

Einstein's theory of general relativity

Consider a *spherically-symmetric*, *non-rotating massive object*...

Embedding diagram ($t = t_0$, $\theta = \pi/2$)..

• 2D equatorial 'slice' of the 3D space at one moment in time

$$z(r) = 2\sqrt{\frac{2GM}{c^2}\left(r - \frac{2GM}{c^2}\right)}$$

Is there a warped 2D surface that will yield the orbits of planetary motion?

where $2GM/c^2 = 1$

Circular orbits on a warped spandex fabric*

Michael Langston B.S. Physics, August 2013

*C.A. Middleton, M. Langston, "Circular orbits on a warped spandex fabric," Am. J. Phys. 82 (4), (2014)

The equation of motion for a rolling marble on a *cylindrically-symmetric surface*...

$$\left(1+z'^2\right)\frac{d^2r}{d\phi^2} + \left[z'z'' - \frac{2}{r}(1+z'^2)\right]\left(\frac{dr}{d\phi}\right)^2 - r + \frac{7g}{5\ell^2}z'r^4 = 0$$

- in cylindrical coordinates $(r, \phi, z(r))$
- z' = dz/dr

The equation of motion for a rolling marble on a *cylindrically-symmetric surface*...

$$(1+z'^2)\frac{d^2r}{d\phi^2} + [z'z'' - \frac{2}{r}(1+z'^2)]\left(\frac{dr}{d\phi}\right)^2 - r + \frac{7g}{5\ell^2}z'r^4 = 0$$

- in cylindrical coordinates $(r, \phi, z(r))$
- z' = dz/dr
- For *circular orbits*, the above equation becomes...

$$\frac{4\pi^2 r}{T^2} = \frac{5}{7}g \cdot z'(r)$$

The shape of the spandex fabric

Technique:

- 1. Construct potential energy (PE) *integral functional* of spandex fabric.
 - *i. Elastic* PE of the *spandex*.
 - ii. Gravitational PE of the spandex.
 - *iii. Gravitational* PE of the *central mass.*
- 2. Apply Calculus of Variations.
 - ⇒ The elastic fabric-mass system will assume the shape which *minimizes* the *total* PE of the system.

The circular equation of motion & the shape equation

$$\frac{4\pi^2 r}{T^2} = \frac{5}{7}g \cdot z'(r)$$
$$rz' \left[1 - \frac{1}{\sqrt{1+z'^2}}\right] = \alpha(M + \pi\sigma_0 r^2)$$

- Circular equation of motion
- The shape equation

Strategy:

Taylor series expansion in the...

- *small curvature* regime, when $z'(r) \ll 1$
- *large curvature* regime, when $z'(r) \gg 1$

The experimental procedure for circular orbits

- 4 ft. diameter trampoline frame

 styrofoam insert for *zero* pre-stretch
 truck tie down around perimeter
- Camera mounted directly above, ramp mounted on frame
- Most *circular* video clip (of ~12) imported into Tracker
- Position determined every 1/30 s and *average radius*, r_{ave} , calculated per revolution
- Shift by 1/8 revolution for subsequent data point

The experiment in the small curvature regime When $z'(r) \ll 1$...

• expanding the shape equation and inserting into the circular eqn of motion

$$T^{3} = \left(\frac{28\pi^{2}}{5g}\right)^{3/2} \frac{1}{\sqrt{2\alpha}} \cdot \frac{r^{2}}{(M + \pi\sigma_{0}r^{2})^{1/2}}$$

25 20 Central Mass $T^{3}(s^{3})^{-15}$ • 0 kg • 0.067 kg 10 * 0.199 kg 0.535 kg 5 • 0.601 kg 0.1 0.2 0.3 0.4 0.5 0.6 $r_{ave}^{2}/(M + \pi \sigma_{0} r_{ave}^{2})^{1/2} (m^{2}/kg^{1/2})$

Notice:

- orbit for zero central mass!
- Slope predicts *α*.

The experiment in the large curvature regime When $z'(r) \gg 1$...

expanding the shape equation and inserting into the circular eqn of motion

$$T = \left(\frac{28\pi^2}{5g}\right)^{1/2} \cdot \frac{r}{(M\alpha + r)^{1/2}}$$

Notice:

•
$$\operatorname{slope}_{th} = \left(\frac{28\pi^2}{5g}\right)^{1/2} = 2.37 \text{ s/m}^{1/2}$$

• $slope_{exp} = 2.62 \text{ s/m}^{1/2}$

• ~10% error in the slope.

Elliptical-like orbits on a Spandex surface*

Danny Weller B.S. Physics, December 2014

Elliptical-like orbits on a Spandex surface*

Danny Weller B.S. Physics, December 2014 (assuming he passes Modern Optics!)

*CMU Physics Seminar on Thursday, November 20, 12:30-1:30pm in WS 202

The equation of motion for a rolling marble on a cylindrically-symmetric surface...

$$(1+z'^2)\frac{d^2r}{d\phi^2} + [z'z'' - \frac{2}{r}(1+z'^2)]\left(\frac{dr}{d\phi}\right)^2 - r + \frac{7g}{5\ell^2}z'r^4 = 0$$

V

v

For elliptical orbits with small eccentricities...

 $r(\phi) = r_0(1 - \varepsilon \cos(\nu \phi))$

- where ν is the *precession parameter* $\nu \equiv \frac{2\pi}{\Delta\phi}$
- Inserting the approximate solution into the equation of motion yields . .

$$\nu = \sqrt{\frac{3z_0' + z_0'' r_0}{z_0' + z_0'^3}}$$

$$v = 1$$

 $v > 1$
 $v < 1$
 $v < 1$
 $v < 1$
 $v < 1$
 $v = 1$
 v

The experimental procedure for elliptical orbits

- Position determined every 1/60 s and *average radius*, r_{ave} , calculated per $\Delta \phi$.
- Angular displacement from r_{max} to r_{max} is measured and the precession parameter is calculated from

$$\nu = \frac{2\pi}{\Delta\phi}$$

The experiment in the small curvature regime

V mass A m 1.000

• For $z'(r) \ll 1$, the slope of the spandex surface takes the form...

$$z'(r) \simeq \left(\frac{2\alpha}{r}\right)^{1/3} (M + \sigma_0 \pi r^2)^{1/3}$$

• Plugging this slope into the equation determining the *precession parameter*

• yields a theoretical value for $u = \nu(M, r)$

The experiment in the large curvature regime

• For $z'(r) \gg 1$, the slope of the spandex surface takes the form...

 $z'(r) \simeq \frac{M\alpha}{r} + 1$

• Plugging this slope into the equation determining the *precession parameter*

$$\nu = \sqrt{\frac{3z_0' + z_0'' r_0}{z_0' + z_0'^3}}$$

• yields a theoretical value for $\nu = \nu(M, r)$

Notice:

• $\nu < 1$ for small r!

Newtonian and general relativistic orbits with small eccentricities on 2D surfaces

Is there a 2D surface that will yield planetary orbits?

Compare the equation of motion for the 2D *orbiting object*

$$(1+z'^2)\frac{d^2r}{d\phi^2} + [z'z'' - \frac{2}{r}(1+z'^2)]\left(\frac{dr}{d\phi}\right)^2 - r + \frac{\tilde{g}}{\tilde{\ell}^2}z'r^4 = 0$$

• to that of an *object in a Newtonian potential*

$$\frac{d^2r}{d\phi^2} - \frac{2}{r}\left(\frac{dr}{d\phi}\right)^2 - r + \frac{GM}{\ell^2}r^2 = 0$$

* will NOT yield *Newtonian orbits* on ANY cylindricallysymmetric surface, *except* in the special case of circular orbits.

L.Q. English and A. Mareno, "Trajectories of rolling marbles on various funnels", Am. J. Phys. 80 (11), 996-1000 (2012)

The equation of motion for an object constrained to reside on a *cylindrically-symmetric surface*...

$$(1+z'^2)\frac{d^2r}{d\phi^2} + [z'z'' - \frac{2}{r}(1+z'^2)]\left(\frac{dr}{d\phi}\right)^2 - r + \frac{\tilde{g}}{\tilde{\ell}^2}z'r^4 = 0$$

-1 -0.5

0.5 / 1

-2

-2.5

-1.5

• For orbits with small eccentricities...

$$r(\phi) = r_0(1 - \varepsilon \cos(\nu \phi))$$

• We find a valid solution, to 1st order in the ε , when

$$\tilde{\ell}^2 = \tilde{g}r_0^3 z_0'$$
$$z_0'(1+z_0'^2)\nu^2 = 3z_0' + r_0 z_0''$$

Michael Nauenberg, "Perturbation approximation for orbits in axially symmetric funnels", to appear in Am. J. Phys.

2D Surfaces...

2D surface that generates Newtonian *stationary* elliptical orbits..

$$\frac{dz}{dr} = \sqrt{2} \ (1 + \kappa r^4)^{-1/2}$$

• When $\kappa=0$, * yields eqn for an *inverted cone* with slope $\sqrt{2}$.

2D surface that generates GR *precessing* elliptical orbits...

$$\frac{dz}{dr} = \sqrt{\frac{2+\beta}{1-\beta}} \cdot (1+\kappa r^{2(2+\beta)})^{-1/2} \qquad \text{where} \qquad \beta = 6GM/c^2 r_0$$

Planets	$r_{\rm o}$ (m)	ε	β
Mercury	5.79*10 ¹⁰	0.2056	$1.53^{*}10^{-7}$
Venus	1.08*10 ¹⁰	0.0068	8.19*10 ⁻⁷
Earth	$1.50*10^{11}$	0.0167	$5.90^{*10^{-8}}$
Mars	2.28*10 ¹¹	0.0934	3.88*10 ⁻⁸
Jupiter	7.78*10 ¹¹	0.0483	$1.14^{*}10^{-8}$
Saturn	$1.43^{*}10^{12}$	0.056	6.19*10 ⁻⁹
Uranus	$2.87^{*10^{12}}$	0.0461	3.08*10 ⁻⁹
Neptune	$4.50^{*10^{12}}$	0.01	$1.97^{*}10^{-9}$

Notice:

- They agree when $\beta \rightarrow 0$; ** diverges when $\beta \rightarrow 1$.
- GR offers a *tiny* correction for the orbits of the solar system planets.

Gary D. White, "On trajectories of rolling marbles in cones and other funnels", Am. J. Phys. 81 (12), 890-898 (2013)

Direct measurement of the *modulus of elasticity*, *E*

The shape equation in the large curvature regime is.. $M\alpha$

$$z'(r) \simeq \frac{M\alpha}{r} + 1$$

• integrating yields..

$$\frac{z(M)}{\ln(R_B)} = (M - M_0)\alpha$$

Notice:

- M = 0.274 0.674 kg regime $\alpha \simeq 0.030$ m/kg
- M = 5.274 7.774 kg regime • $\alpha \simeq 0.006$ m/kg

Top 10: M = 0.274kg - 1.174kg in 0.1 kg intervals Bottom 14: M = 1.274kg - 7.774kg in 0.5 kg intervals

Circular orbits in general relativity

One arrives at an *exact* Kepler-like expression of the form..

$$T^2 \propto \frac{r^3}{(M - 2 \cdot \rho_0 \cdot 4\pi r^3/3)}$$

• Kepler's 3^{rd} Law when $\rho_0 = 0$.

Compare to the Kepler-like relation for a marble on the warped spandex fabric in the small curvature regime..

*

$$T^3 \propto \frac{r^2}{(M + \sigma_0 \cdot \pi r^2)^{1/2}}$$

• Areal mass density, σ_0 , plays the role of a *negative* vacuum energy, ρ_0 .