The orbital motion of marbles on warped 2D surfaces

Chad A. Middleton, Ph.D.
Brown Bag Seminar

November 7, 2014

Outline

- Gravitation \& orbital motion
- Newtonian gravitation
- Kepler's 3 laws
- Einstein's theory of general relativity
- Circular orbits on a warped spandex fabric
- Elliptical-like orbits on a spandex surface
- Newtonian and general relativistic orbits with small eccentricities on 2D surfaces

Newton's universal law of gravitation

$$
F=\frac{G m_{1} m_{2}}{r^{2}}
$$

Successes
Described the motion of massive bodies...
...on earth
...in the heavens.

Kepler's 3 laws of planetary motion

Kepler's $1^{\text {st }}$ law:

- The planets move in elliptical orbits with the Sun at one focus.
Kepler's $2^{\text {nd }}$ law:
- A line drawn from the Sun to any planet sweeps out equal areas in equal times.
Kepler's $3^{\text {rd }}$ law:
- The period of the planet squared is proportional to the radius of its orbit cubed
or

$$
T^{2}=\left(\frac{4 \pi^{2}}{G}\right) \cdot \frac{r^{3}}{M}
$$

Notice:

- - Kepler's $3^{\text {rd }}$ Law is independent of m !

Einstein's theory of general relativity

$$
G_{\mu \nu}=\frac{8 \pi G}{c^{4}} T_{\mu \nu}
$$

- $G_{\mu \nu}$ describes the curvature of spacetime
- $T_{\mu \nu}$ describes the matter \& energy in spacetime

> Matter tells space how to curve, space tells matter how to move.

Sean M. Carrol, Spacetime and Geometry: An Introduction to Einstein's General Relativity (Addison Wesley, 2004)

Einstein's theory of general relativity

Consider a spherically-symmetric, non-rotating massive object...

Embedding diagram ($t=t_{0}, \theta=\pi / 2$)..

- 2D equatorial 'slice' of the 3D space at one moment in time

$$
z(r)=2 \sqrt{\frac{2 G M}{c^{2}}\left(r-\frac{2 G M}{c^{2}}\right)}
$$

Is there a warped 2D surface that will yield the orbits of planetary motion?

Circular orbits on a warped spandex fabric*

Michael Langston

B.S. Physics, August 2013

*C.A. Middleton, M. Langston, "Circular orbits on a warped spandex fabric," Am. J. Phys. 82 (4), (2014)

The equation of motion for a rolling marble on a

 cylindrically-symmetric surface...$$
\left(1+z^{\prime 2}\right) \frac{d^{2} r}{d \phi^{2}}+\left[z^{\prime} z^{\prime \prime}-\frac{2}{r}\left(1+z^{\prime 2}\right)\right]\left(\frac{d r}{d \phi}\right)^{2}-r+\frac{7 g}{5 \ell^{2}} z^{\prime} r^{4}=0
$$

- in cylindrical coordinates $(r, \phi, z(r))$
- $z^{\prime}=d z / d r$

The equation of motion for a rolling marble on a

 cylindrically-symmetric surface...$$
\left(1+z^{\prime 2}\right) \frac{d^{2} r}{d \phi^{2}}+\left[z^{\prime} z^{\prime \prime}-\frac{2}{r}\left(1+z^{\prime 2}\right)\right]\left(\frac{d r}{d \phi}\right)^{2}-r+\frac{7 g}{5 \ell^{2}} z^{\prime} r^{4}=0
$$

- in cylindrical coordinates $(r, \phi, z(r))$
- $z^{\prime}=d z / d r$
- For circular orbits, the above equation becomes...

$$
\frac{4 \pi^{2} r}{T^{2}}=\frac{5}{7} g \cdot z^{\prime}(r)
$$

The shape of the spandex fabric

Technique:

1. Construct potential energy (PE) integral functional of spandex fabric.
i. Elastic PE of the spandex.
ii. Gravitational PE of the spandex.
iii. Gravitational PE of the central mass.
2. Apply Calculus of Variations.
\Rightarrow The elastic fabric-mass system will assume the shape which minimizes the total PE of the system.

The circular equation of motion \& the shape equation

$$
\begin{gathered}
\frac{4 \pi^{2} r}{T^{2}}=\frac{5}{7} g \cdot z^{\prime}(r) \\
r z^{\prime}\left[1-\frac{1}{\sqrt{1+z^{\prime 2}}}\right]=\alpha\left(M+\pi \sigma_{0} r^{2}\right)
\end{gathered}
$$

- Circular equation of motion
- The shape equation

Strategy:
Taylor series expansion in the...

- small curvature regime, when $z^{\prime}(r) \ll 1$
- large curvature regime, when $z^{\prime}(r) \gg 1$

The experimental procedure for circular orbits

- 4 ft . diameter trampoline frame - styrofoam insert for zero pre-stretch - truck tie down around perimeter
- Camera mounted directly above, ramp mounted on frame
- Most circular video clip (of ~ 12) imported into Tracker
- Position determined every $1 / 30 \mathrm{~s}$ and average radius, $r_{\text {ave }}$, calculated per revolution
- Shift by $1 / 8$ revolution for subsequent data point

The experiment in the small curvature regime

When $z^{\prime}(r) \ll 1 \ldots$

- expanding the shape equation and inserting into the circular eqn of motion

$$
T^{3}=\left(\frac{28 \pi^{2}}{5 g}\right)^{3 / 2} \frac{1}{\sqrt{2 \alpha}} \cdot \frac{r^{2}}{\left(M+\pi \sigma_{0} r^{2}\right)^{1 / 2}}
$$

Notice:

- orbit for zero central mass!
- \quad Slope predicts α.

The experiment in the large curvature regime

 When $z^{\prime}(r) \gg 1 \ldots$- expanding the shape equation and inserting into the circular eqn of motion

$$
T=\left(\frac{28 \pi^{2}}{5 g}\right)^{1 / 2} \cdot \frac{r}{(M \alpha+r)^{1 / 2}}
$$

- slope $_{t h}=\left(\frac{28 \pi^{2}}{5 g}\right)^{1 / 2}=2.37 \mathrm{~s} / \mathrm{m}^{1 / 2}$
- slope $_{\text {exp }}=2.62 \mathrm{~s} / \mathrm{m}^{1 / 2}$

Elliptical-like orbits on a Spandex surface*

Danny Weller
B.S. Physics, December 2014

Elliptical-like orbits on a Spandex surface*

Danny Weller

B.S. Physics, December 2014
(assuming he passes Modern Optics!)

[^0]The equation of motion for a rolling marble on a cylindrically-symmetric surface...

$$
\left(1+z^{\prime 2}\right) \frac{d^{2} r}{d \phi^{2}}+\left[z^{\prime} z^{\prime \prime}-\frac{2}{r}\left(1+z^{\prime 2}\right)\right]\left(\frac{d r}{d \phi}\right)^{2}-r+\frac{7 g}{5 \ell^{2}} z^{\prime} r^{4}=0
$$

For elliptical orbits with small eccentricities...

$$
r(\phi)=r_{0}(1-\varepsilon \cos (\nu \phi))
$$

- where ν is the precession parameter

$$
\nu \equiv \frac{2 \pi}{\Delta \phi}
$$

- Inserting the approximate solution into the equation of motion yields

$$
\nu=\sqrt{\frac{3 z_{0}^{\prime}+z_{0}^{\prime \prime} r_{0}}{z_{0}^{\prime}+z_{0}^{\prime 3}}}
$$

The experimental procedure for elliptical orbits

- Position determined every $1 / 60 \mathrm{~s}$ and average radius, $r_{\text {ave }}$, calculated per $\Delta \phi$.
- Angular displacement from $r_{\text {max }}$ to $r_{\text {max }}$ is measured and the precession parameter is calculated from

$$
\nu=\frac{2 \pi}{\Delta \phi}
$$

- which can be compared to the theoretical value.

The experiment in the small curvature regime

- For $z^{\prime}(r) \ll 1$, the slope of the spandex surface takes the form...

$$
z^{\prime}(r) \simeq\left(\frac{2 \alpha}{r}\right)^{1 / 3}\left(M+\sigma_{0} \pi r^{2}\right)^{1 / 3}
$$

- Plugging this slope into the equation determining the precession parameter

$$
\nu=\sqrt{\frac{3 z_{0}^{\prime}+z_{0}^{\prime \prime} r_{0}}{z_{0}^{\prime}+z_{0}^{\prime 3}}}
$$

- yields a theoretical value for

$$
\nu=\nu(M, r)
$$

Precession Parameter (v)

- $\mathrm{M}=0 \mathrm{~kg}$
— $\mathrm{M}=0.0666 \mathrm{~kg}$
- $\mathrm{M}=0.1985 \mathrm{~kg}$
- $\mathrm{M}=0.5344 \mathrm{~kg}$

The experiment in the large curvature regime

- For $z^{\prime}(r) \gg 1$, the slope of the spandex surface takes the form...

$$
z^{\prime}(r) \simeq \frac{M \alpha}{r}+1
$$

- Plugging this slope into the equation determining the precession parameter

$$
\nu=\sqrt{\frac{3 z_{0}^{\prime}+z_{0}^{\prime \prime} r_{0}}{z_{0}^{\prime}+z_{0}^{\prime 3}}}
$$

- yields a theoretical value for

$$
\nu=\nu(M, r)
$$

Notice:

- $\nu<1$ for small r !

Precession Parameter (v)

— $\mathrm{M}=5.274 \mathrm{~kg}$
— $\mathrm{M}=6.274 \mathrm{~kg}$
— $\mathrm{M}=7.274 \mathrm{~kg}$
— $\mathrm{M}=7.774 \mathrm{~kg}$

Newtonian and general relativistic orbits with small eccentricities on 2D surfaces

Is there a 2D surface that will yield planetary orbits?

Compare the equation of motion for the 2D orbiting object

$$
\left(1+z^{\prime 2}\right) \frac{d^{2} r}{d \phi^{2}}+\left[z^{\prime} z^{\prime \prime}-\frac{2}{r}\left(1+z^{\prime 2}\right)\right]\left(\frac{d r}{d \phi}\right)^{2}-r+\frac{\tilde{g}}{\tilde{\ell}^{2}} z^{\prime} r^{4}=0
$$

- to that of an object in a Newtonian potential

$$
\frac{d^{2} r}{d \phi^{2}}-\frac{2}{r}\left(\frac{d r}{d \phi}\right)^{2}-r+\frac{G M}{\ell^{2}} r^{2}=0
$$

* will NOT yield Newtonian orbits on ANY cylindricallysymmetric surface, except in the special case of circular orbits.

The equation of motion for an object constrained to reside on a cylindrically-symmetric surface...

$$
\left(1+z^{\prime 2}\right) \frac{d^{2} r}{d \phi^{2}}+\left[z^{\prime} z^{\prime \prime}-\frac{2}{r}\left(1+z^{\prime 2}\right)\right]\left(\frac{d r}{d \phi}\right)^{2}-r+\frac{\tilde{g}}{\tilde{\ell}^{2}} z^{\prime} r^{4}=0
$$

- For orbits with small eccentricities...

$$
r(\phi)=r_{0}(1-\varepsilon \cos (\nu \phi))
$$

- We find a valid solution, to $1^{\text {st }}$ order in the ε, when

$$
\begin{aligned}
\tilde{\ell}^{2} & =\tilde{g} r_{0}^{3} z_{0}^{\prime} \\
z_{0}^{\prime}\left(1+z_{0}^{\prime 2}\right) \nu^{2} & =3 z_{0}^{\prime}+r_{0} z_{0}^{\prime \prime}
\end{aligned}
$$

2D Surfaces.

2D surface that generates Newtonian stationary elliptical orbits..
*

$$
\frac{d z}{d r}=\sqrt{2}\left(1+\kappa r^{4}\right)^{-1 / 2}
$$

- When $\kappa=0$, ${ }^{*}$ yields eqn for an inverted cone with slope $\sqrt{2}$.

2D surface that generates GR precessing elliptical orbits...

$$
\frac{d z}{d r}=\sqrt{\frac{2+\beta}{1-\beta}} \cdot\left(1+\kappa r^{2(2+\beta)}\right)^{-1 / 2} \underbrace{* *}_{\quad} \quad \begin{gathered}
\text { where } \\
\beta=6 G M / c^{2} r_{0}
\end{gathered}
$$

Notice:

- They agree when $\beta \rightarrow 0 ;{ }^{* *}$ diverges when $\beta \rightarrow 1$.

Planets	$r_{0}(\mathrm{~m})$	ε	β
Mercury	$5.79^{*} 10^{10}$	0.2056	$1.53^{*} 10^{-7}$
Venus	$1.08^{*} 10^{10}$	0.0068	$8.19^{*} 10^{-7}$
Earth	$1.50^{*} 10^{11}$	0.0167	$5.90^{*} 10^{-8}$
Mars	$2.28^{*} 10^{11}$	0.0934	$3.88^{*} 10^{-8}$
Jupiter	$7.78^{*} 10^{11}$	0.0483	$1.14^{*} 10^{-8}$
Saturn	$1.43^{*} 10^{12}$	0.056	$6.19^{*} 10^{-9}$
Uranus	$2.87^{*} 10^{12}$	0.0461	$3.08^{*} 110^{-9}$
Neptune	$4.50^{*} 10^{12}$	0.01	$1.97^{*} 10^{-9}$

- GR offers a tiny correction for the orbits of the solar system planets.

Direct measurement of the modulus of elasticity, E

The shape equation in the large curvature regime is..

$$
z^{\prime}(r) \simeq \frac{M \alpha}{r}+1
$$

- integrating yields..

$$
\frac{z(M)}{\ln \left(R_{B}\right)}=\left(M-M_{0}\right) \alpha
$$

Notice:

- $\quad M=0.274-0.674 \mathrm{~kg}$ regime

$$
\alpha \simeq 0.030 \mathrm{~m} / \mathrm{kg}
$$

- $M=5.274-7.774 \mathrm{~kg}$ regime

$$
\alpha \simeq 0.006 \mathrm{~m} / \mathrm{kg}
$$

Top 10: $M=0.274 \mathrm{~kg}-1.174 \mathrm{~kg}$ in 0.1 kg intervals
Bottom 14: $M=1.274 \mathrm{~kg}-7.774 \mathrm{~kg}$ in 0.5 kg intervals

Circular orbits in general relativity

One arrives at an exact Kepler-like expression of the form..

$$
T^{2} \propto \frac{r^{3}}{\left(M-2 \cdot \rho_{0} \cdot 4 \pi r^{3} / 3\right)}
$$

- Kepler's $3^{\text {rd }}$ Law when $\rho_{0}=0$.

Compare to the Kepler-like relation for a marble on the warped spandex fabric in the small curvature regime..

$$
T^{3} \propto \frac{r^{2}}{\left(M+\sigma_{0} \cdot \pi r^{2}\right)^{1 / 2}}
$$

- Areal mass density, σ_{0}, plays the role of a negative vacuum energy, ρ_{o}.

[^0]: *CMU Physics Seminar on Thursday, November 20, 12:30-1:30pm in WS 202

