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Abstract. Let introduce the discrete Sobolev-type inner product

〈f, g〉 =

∫ 1

−1
f(x)g(x)dµ(x) + M [f(1)g(1) + f(−1)g(−1)]

+ N [f ′(1)g′(1) + f ′(−1)g′(−1)],

where

dµ(x) =
Γ(2α + 2)

2(2α+1)Γ2(α + 1)
(1− x2)α dx, M, N ≥ 0, α > −1.

In this paper we prove the failure of a.e. convergence of the Fourier expan-

sion in terms of the orthonormal polynomials with respect to the above inner

product. Necessary conditions for mean convergence are also discussed.

1. Introduction

Let us first introduce some notation. We shall say that f ∈ Lp(dµ) if f is

measurable on [−1, 1] and ‖f‖Lp(dµ)< ∞, where

‖f‖Lp(dµ)=





(∫ 1

−1
|f(x)|pdµ(x)

) 1
p

if 1 ≤ p < ∞,

ess sup
−1<x<1

|f(x)| if p = ∞.

Now let introduce the Sobolev-type spaces

Sp = {f : ‖f‖p
Sp

= ‖f‖p
Lp(dµ)+M [|f(1)|p + |f(−1)|p]

+ N [|f ′(1)|p + |f ′(−1)|p] < ∞}, 1 ≤ p < ∞,

S∞ = {f : ‖f‖S∞= ‖f‖L∞(dµ)< ∞}, p = ∞.
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If f, g ∈ S2 we can introduce the discrete Sobolev-type inner product

(1) 〈f, g〉 =
∫ 1

−1

f(x)g(x)dµ(x) + M [f(1)g(1) + f(−1)g(−1)]

+ N [f ′(1)g′(1) + f ′(−1)g′(−1)]

where M,N ≥ 0. We denote by {B̂(α)
n }n≥0 the orthonormal polynomials with re-

spect to the inner product (1) (see [1], [2], [11]). They are called Gegenbauer-

Sobolev type polynomials. For M = N = 0, we get the classical Gegenbauer

orthonormal polynomials that we will denote {p(α)
n }n≥0. It is well known that, up

to the Gegenbauer orthonormal polynomials, the polynomials B̂
(α)
n for M > 0,

N ≥ 0 decay at the rate of n−α−3/2 at the end points 1 and −1.

For f ∈ S1, the Fourier expansion in terms of Gegenbauer-Sobolev type polyno-

mials is

(2)
∞∑

k=0

f̂(k)B̂(α)
k (x),

where

f̂(k) = 〈f, B̂
(α)
k 〉, k = 0, 1, ... .

The Cesàro means of order δ of the expansion (2) is defined by (see [19, p. 76-77])

σδ
nf(x) =

n∑

k=0

Aδ
n−k

Aδ
n

f̂(k)B̂(α)
k (x),

where Aδ
k =

(
k+δ

k

)
.

For M = N = 0 and α = 0, Pollard [15] shows that for each p < 4/3 there

exists a function f ∈ Lp(dx) such that its Fourier expansion (2) diverges a.e. on

[−1, 1]. Later on, Meaney [9] extends the result to p = 4/3. Furthermore, he proved

that this is a special case of a divergence result for Jacobi polynomials series. The

failure of a.e. convergence of the expansions (2), for M > 0 and N = 0, has been

discussed in [4].

The main goal of this contribution is to prove that, for M ≥ 0, N > 0, and

p0 = 4α+4
2α+3 , there are functions f ∈ Lp0(dµ) whose expansions in terms of the

polynomials associated with the Sobolev inner product (1) are divergent almost

everywhere on [−1, 1].

The structure of the paper is as follows. In Section 2, the background about

the asymptotic behaviour of Gegenbauer-Sobolev type orthogonal polynomials is
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presented. In Section 3 we show that, for M, N ≥ 0, 1 < p < p0 and 0 < δ <

2α+2
p − 2α+3

2 , there exists a function f ∈ Lp(dµ) with almost everywhere divergent

Cesàro means of order δ. Finally, in Section 4 necessary conditions for the norm

convergence of the Fourier expansion (2) are given.

Notice that the study of the convergence of the Fourier expansion in terms of

the polynomials with respect to the discrete Sobolev inner product

〈f, g〉 =
∫ 1

−1

f(x)g(x)dµ(x) +
K∑

k=1

Nk∑

i=0

Mk,if
(i)(ak)g(i)(ak), Mk,i > 0,

has been discussed in ([5], [6], [7], [16]).

2. Gegenbauer-Sobolev type polynomials

We summarize some properties of Gegenbauer-Sobolev type polynomials that

we will need in the sequel (see [1], [2], [11]). Throughout the manuscript positive

constants are denoted by c, c1, ... ; unless specified, their values may vary at every

occurrence. The notation un
∼= vn means that the sequence un/vn converges to 1

and notation un ∼ vn means c1un ≤ vn ≤ c2un for n large enough.

The representation of B̂
(α)
n in terms of Gegenbauer orthonormal polynomials is

(3) B̂(α)
n (x) = An(1− x2)2p(α+4)

n−4 (x) + Bn(1− x2)p(α+2)
n−2 (x) + Cnp(α)

n (x)

where

i) If M = 0, N > 0, then

An
∼= 2α+1Γ(α + 1)

α + 2

√
α + 1

Γ(2α + 3)
, Bn

∼= −2α+1Γ(α + 1)

√
α + 1

Γ(2α + 3)
, Cn

∼= −An,

ii) If M > 0, N > 0, then

An
∼= 2α+1Γ(α + 1)

√
α + 1

Γ(2α + 3)
, Bn ∼ −n−2α−2, Cn ∼ −n−2α−2

iii) If M > 0, N = 0, then

An = 0, Bn
∼= −2α+1Γ(α + 1)

√
α + 1

Γ(2α + 3)
, Cn ∼ n−2α−2.

The polynomials B̂
(α)
n satisfy the estimate

(4) |B̂(α)
n (cosθ)| =





O(θ−α−1/2) if c/n < θ ≤ π/2

O(nα+1/2) if 0 ≤ θ ≤ c/n.
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The inner strong asymptotic behaviour of B̂
(α)
n , for θ ∈ [ε, π − ε] and ε > 0, is

given by

(5) B̂(α)
n (cosθ) = c

(
sin

θ

2
cos

θ

2

)−α−1/2

cos(kθ + γ) + O(n−1),

where k = n + α + 1/2 and γ = −(α + 1/2)π/2.

The formula of Mehler-Heine type for Gegenbauer orthonormal polynomials is

(see [17, Theorem 8.1.1] and [17, (4.3.4)])

(6) lim
n→∞

n−α−1/2p(α)
n

(
cos(

z

n
)
)

= z−αJα(z),

where α is a real number and Jα(z) is the Bessel function. This formula holds

uniformly for |z| ≤ R, for R a given positive real number.

From (8) it can be shown that

(7) lim
n→∞

n−α−1/2p(α)
n

(
cos(

z

n + j
)
)

= z−αJα(z)

holds uniformly for |z| ≤ R, R > 0 fixed, and j ∈ N ∪ {0}.

Lemma 1. For |z| ≤ R, R > 0 fixed, we get

(8) lim
n→∞

n−α−1/2B̂(α)
n (cos(

z

n
)) = z−α (c1Jα+4(z)− c2Jα+2(z)− c3Jα(z))

where

i) If M = 0, N > 0, then ci > 0, i = 1, 2, 3, c1 = c3

ii) If M > 0, N > 0, then c1 > 0 and c2 = c3 = 0

iii) If M > 0, N = 0, then c2 > 0 and c1 = c3 = 0

Proof. From (3) we have

n−α−1/2B̂(α)
n (cos

z

n
) = An sin4(

z

n
)n−α−1/2p

(α+4)
n−4 (cos

z

n
)

+ Bn sin2(
z

n
)n−α−1/2p

(α+2)
n−2 (cos

z

n
)

+ Cnn−α−1/2p(α)
n (cos

z

n
)

where j ∈ N ∪ {0}.
Finally, we take the limit n →∞ and use the fact that sin z

n
∼= z

n and (7) to obtain

(8). ¤
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Now we will estimate the Sp norms for Gegenbauer-Sobolev polynomials

(9) ‖B̂(α)
n ‖p

Sp
=

∫ 1

−1

|B̂(α)
n (x)|pdµ(x) + M

[
|(B̂(α)

n )(1)|p + |(B̂(α)
n )(−1)|p

]

+ N
[
|(B̂(α)

n )′(1)|p + |(B̂(α)
n )′(−1)|p

]
,

where 1 ≤ p < ∞. Hence, it is sufficient to estimate the Lp(dµ) norms for B̂
(α)
n .

For M = N = 0 the calculation of this norm appears in [17, p.391. Exercise 91]

(see also [8, (2.2)]).

Lemma 2. Let M ≥ 0 and N ≥ 0. For α ≥ −1/2 and 1 ≤ q < ∞

∫ 1

0

(1− x)α|B̂(α)
n (x)|qdx ∼





c if 2α > qα− 2 + q/2,

log n if 2α = qα− 2 + q/2,

nqα+q/2−2α−2 if 2α < qα− 2 + q/2.

Proof. In order to prove the lemma, we follow the same lines as in [17, Theo-

rem 7.34]. From (4), for qα + q/2− 2α− 2 6= 0, we have

∫ 1

0

(1− x)α|B̂(α)
n (x)|qdx ∼

∫ π/2

0

θ2α+1 |B̂(α)
n (cosθ)|qdθ

= O(1)
∫ n−1

0

θ2α+1 nqα+q/2dθ + O(1)
∫ π/2

n−1
θ2α+1 θ−qα−q/2dθ

= O(nqα+q/2−2α−2) + O(1),

and for qα + q/2− 2α− 2 = 0 we have
∫ 1

0

θ2α+1|B̂(α)
n (x)|qdx = O(log n).

Now we will prove the lower estimates for integrals involving Gegenbauer-Sobolev

type polynomials when M = 0 and N > 0. The proof of the other cases can be

done in a similar way. According to Lemma 1 we have

∫ π/2

0

θ2α+1|B̂(α)
n (cosθ)|qdθ >

∫ n−1

0

θ2α+1|B̂(α)
n (cosθ)|qdθ

∼= c

∫ 1

0

(z/n)2α+1nqα+q/2 n−1|z−α (c1Jα+4(z)− c2Jα+2(z)− c1Jα(z)) |qdz

∼ nqα+q/2−2α−2.
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Using a similar argument as above, for 2α = qα + q/2− 2, we have

∫ π/2

0

θ2α+1|B̂(α)
n (cosθ)|qdx > c

∫ n−1/2

0

θ2α+1|B̂(α)
n (cosθ)|qdx

∼= c

∫ n1/2

0

z2α+1|z−α (c1Jα+4(z)− c2Jα+2(z)− c1Jα(z)) |qdz

≥ c nα+1 ≥ c log n.

Finally, from (5) we obtain
∫ π/2

0

θ2α+1|B̂(α)
n (cosθ)|qdθ >

∫ π/2

π/4

θ2α+1|B̂(α)
n (cosθ)|qdθ ∼ c.

The proof of Lemma 2 is complete. ¤

By using this lemma and [11, Proposition 4], we have:

Corollary 1. Let M ≥ 0 and N ≥ 0. For α ≥ −1/2 and 1 ≤ q < ∞

‖B̂(α)
n (x)‖Sq∼





c if 2α > qα− 2 + q/2,

(log n)1/q if 2α = qα− 2 + q/2,

nα+1/2−(2α+2)/q if 2α < qα− 2 + q/2.

3. Divergence almost everywhere

If the expansions (2) converges on a set, say E, of positive measure in [-1,1] then

|cn(f)B̂(α)
n (x)| → 0 when n →∞

for x ∈ E. From Egorov’s Theorem it follows that there is a subset E1 ⊂ E of

positive measure such that

|cn(f)B̂(α)
n (x)| → 0, when n →∞,

uniformly for x ∈ E1. Hence, from (5), we have

|cn(f)
(
cos(kθ + γ) + O(n−1)

) | → 0, for n →∞,

uniformly for cosθ ∈ E1. Using the Cantor-Lebesgue Theorem, as described in [10,

Subsection 1.5](see also [19, p.316]), we obtain

(10) |cn(f)| → 0, when n →∞.
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From Lemma 2, for α > −1/2 and 1 ≤ q < ∞, we have

(11) ||B̂(α)
n ||Lq(dµ) =

(
Γ(2α + 2)

22αΓ2(α + 1)

∫ 1

0

|B̂(α)
n (x)|q(1− x)αdx

)1/q

∼





(log n)1/q0 if p = p0,

nα+1/2−2α/q−2/q if p < p0.

where p is the conjugate of q i.e. 1/p + 1/q = 1.

Now we can prove our first result

Theorem 1. There is an f ∈ Sp0 whose Fourier expansion (2) diverges almost

everywhere on [−1, 1].

Proof. Taking into account (1), the Fourier coefficients of the series (2) can be

written as

(12) cn(f) = c′n(f) + M
[
f(1)B̂(α)

n (1) + f(−1)B̂(α)
n (−1)

]

+ N

[
f ′(1)

(
B̂(α)

n

)′
(1) + f ′(−1)

(
B̂(α)

n

)′
(−1)

]
,

where

c′n(f) =
∫ 1

−1

f(x)B̂(α)
n (x)dµ(x).

The uniform boundedness principle and (11) yield the existence of functions

f ∈ Sp0 , supported on [0, 1], such that the linear functional c′n(f) satifies

c′n(f)
(log n)1/(2q0)

→∞, when n →∞.

Hence, from (12) and [11, Proposition 4], we obtain

cn(f)
(log n)1/(2q0)

→∞, when n →∞.

Since this result contradicts (12) then for this f the Fourier-Sobolev series diverges

almost everywhere on [−1, 1]. ¤

Next we show that, for some values of δ, there are functions with a.e. divergent

Cesàro means of order δ.

Theorem 2. Let α, p, and δ be real numbers such that α > −1/2,

1 < p <
4α + 4
2α + 3

if M > 0, N ≥ 0,
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1 ≤ p <
4α + 4
2α + 3

, if M = 0, N ≥ 0,

0 ≤ δ <
2α + 2

p
− 2β + 3

2
,

then there exists f ∈ Sp whose Cesàro means σδ
nf(x) is divergent almost everywhere

on [−1, 1].

Proof. Let M,N ≥ 0. If the expansion (2) is Cesàro summable of order δ on a set,

say E, of positive measure in [−1, 1], then from [19, Theorem 3.1.22] (see also [10,

Lemma 1.1]) it follows that

|cn(f)B̂(α)
n (x)| = O(nδ)

for x ∈ E. Again, from Egorov’s Theorem it follows that there is a subset E1 ⊂ E

of positive measure such that

|cn(f)B̂(α)
n (x)| = O(nδ)

uniformly for x ∈ E1. Hence, from (5), we have

|n−δcn(f)
(
cos(kθ + γ) + O(n−1)

) | ≤ c.

uniformly for x = cosθ ∈ E1. Using again the Cantor-Lebesgue Theorem we obtain

(13) |cn(f)
nδ

| ≤ c, ∀n ≥ 1.

Suppose that

0 ≤ δ <
2α + 2

p
− 2β + 3

2
.

If q is the conjugate of p, then from the last inequality, we get

δ < α +
1
2
− 2β

q
− 2

q
.

Using the argument given in [10, Subsection 1.4], (11), and [11, Proposition 4],

for the linear functional c′n(f) =
∫ 1

−1
f(x)B̂(α)

n (x)dµ(x), it follows that there is an

f ∈ Sp, where

1 < p < p0 if M > 0, N ≥ 0,

1 ≤ p < p0, if M = 0, N ≥ 0,

supported on [0, 1], such that

c′n(f)
nδ

→∞, when n →∞.
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So, from (12) and [11, Proposition 4], we obtain

cn(f)
nδ

→∞, when n →∞.

Taking into account (13), for this f the Cesàro means σδ
nf(x) diverges almost

everywhere. ¤

Remark 1. Using formulae in [3], relating the Riesz and Cesàro means of order

δ ≥ 0, we conclude that Theorem 2 also holds for the Riesz means.

4. Necessary conditions for the norm convergence

The problem of the norm convergence of partial sums of the Fourier expansions

in terms of Gegenbauer polynomials has been discussed by many authors. See

[12], [13], [14], and the references therein.

Let Snf be the n-th partial sum of the expansion (2)

Sn(f, x) =
n∑

k=0

f̂(k)B̂(α)
k (x).

Theorem 3. Let α > −1/2 and 1 < p < ∞. If there exists a constant c > 0 such

that

(14) ‖Snf‖Sp≤ c‖f‖Sp

for every f ∈ Sp and n ≥ 0, then p ∈ (p0 q0).

Proof. For the proof, we apply the same argument as in [13] (see also [18]). Assume

that (4.1) holds. Then

‖〈f, B̂(α)
n 〉B̂(α)

n (x)‖Sp≤ 2c‖f‖Sp .

Therefore

‖B̂(α)
n (x)‖Sp‖B̂(α)

n (x)‖Sq< ∞,

where p is the conjugate of q. From Corollary 1, it follows that the last inequality

holds if and only if p ∈ (p0 q0).

The proof of Theorem 4.1 is completed.

¤
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