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Abstract: The study presents a novel scheme that recognizes and classifies different sub-phases
within the involuntary breathing movement (IBM) phase during breath-holding (BH). We collected
force data from eight recreational divers until the conventional breakpoint (CB). They were in a
supine position on force plates. We segmented their data into the no-movement (NM) phase aka
easy phase and IBM phase (comprising several events or sub-phases of IBM). The acceleration and
jerk were estimated from the data to quantify the IBMs, and phase portraits were developed to select
and extract specific features. The K means clustering was performed on these features to recognize
different sub-phases within the IBM phase. We found five-six optimal clusters separating different
sub-phases within the IBM phase. These clusters separating different sub-phases have physiological
relevance to internal struggle and were labeled as classes for classification using support vector
machine (SVM), naive bayes (NB), decision tree (DT), and K-nearest neighbor (K-NN). In comparison
with no feature selection and extraction, we found that our phase portrait method of feature selection
and extraction had a low computational cost and high robustness of 96–99% accuracy.

Keywords: Acceleration; Jerk; Involuntary Breathing Movement; Pattern Recognition; Classification.

1. Introduction

There are involuntary physiological responses present in the biological systems that
are activated when life-threatening situations arise. The prolonged contraction of the
diaphragm and external intercostal muscle during BH results in one such response. It is
considered that prolonged contraction and hypercapnia during BH activate chemoreceptors
[1] [2]. These receptors reaching the sensory cortex generate a dyspnea signal, which is
crucial for the initiation of breathing [3] [4]. But, humans extend BH through the phasic
involuntary diaphragmic contractions, especially under certain circumstances such as free
diving [5].

The question is whether sensors can detect movement patterns associated with these
involuntary contractions? The question is crucial for abnormal breathing detection, and
the answer is in the duration and strength of involuntary muscle contractions during the
struggle phase (SP). SP is a phase in which IBMs appear due to deep muscle involuntary
contractions. Thus, invasive methods such as pressure transducer-based catheters can
capture them [6], but non-invasive methods such as surface EMG, and force plates during
strong contractions can be applicable [4], [7], [8]. The IBM starts with the physiological
breakpoint ((PB), the point where the first IBM appears) and ends with CB (the point
where breathing is resumed voluntarily) [7]. The IBMs are periodic and very subtle and are
controlled autonomously during SP [4]. Thus, rhythmic varying patterns of IBMs associated
with involuntary periodic contractions can be acquired using force based non-invasive
methods.

Previous studies used a simple computational model to detect phases during BH (onset
and end offset of the IBM phase) [6]. However, the IBM phase is more complex than just
onset and end offset. IBMs in SP are rapid continuous movements of varying magnitude.
Previous studies had shown complex varying phases of IBMs, as IBMs’ amplitude and
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frequencies kept increasing till the CB [9], [10]. Thus, using a simple model, it is hard
to detect patterns or sub-phases in a movement of such nature. Moreover, the current
literature does not present methods to recognize such sub-phases within the IBM phase.
Therefore, methods emphasizing detecting patterns or sub-phases within the IBM phase
are of importance in clinical science and should be developed. Hence, the goal of our study
is to design such a method. We refer to the IBM phase as several events or patterns of IBMs
during the SP.

In this study, we present a novel scheme (shown in figure 1) that can recognize different
sub-phases within the IBM phase during BH, and classify them accordingly. The force
sensors were used to capture kinetics associated with IBMs as it comprises mechanical
components [4]. We did not use force data directly for the categorization because kinematic
patterns of rapid movements can be quantified nicely through jerk and acceleration. Hence,
the rapid movements related to involuntary contractions during BH was estimated using
acceleration and jerk. These outputs were later used as features for pattern recognition and
classification of IBM sub-phases.

2. Materials and Methods

The IRB review board of Colorado Mesa University has approved this study. In this
study, we recruited eight healthy participants who are recreational divers. Divers generally
have the higher lung capacity and better control of their breathing due to years of intense
training. This makes them a better fit for our study. The demographic data of participants
recruited in our study is listed in table 1.

Table 1. Demographic data of participants

Participant ID Sex Ageu Heightv Massw Experienceu

P1 Male 20s 183.5 87.5 6
P2 Female 20s 174.5 72.0 6
P3 Male 20s 183.0 78.0 15
P4 Male 20s 171.0 67.0 1
P5 Female 20s 164.0 63.5 12
P6 Male 20s 190.0 79.0 2
P7 Male 20s 174.5 89.5 3
P8 Male 20s 189.0 114.0 5

Units:- u years, v centimeters, w kilograms, u years.

2.1. Experimental Design

The protocol to collect data from a single participant required a single visit to our
lab. On the visit, signed consent was obtained, and data regarding their age, gender,
height, weight, and years of experience was recorded as shown in table 1. They were also
instructed to avoid eating, drinking, and exercising two hours before the data collection.
Two AMTI force plates were used to acquire the data from the participants at a sampling
rate of 1Khz. We asked the participant to lay in a supine position on the force plates. The
participants were laying with a static posture and covered the force plates surface mostly
with their upper and middle back. Moreover, to maintain a comfortable posture during
data collection, a cushion and a rolled-up pad were positioned under their head and knee.

We introduced a warm-up session in three steps. In the first step, participants breathed
normally (relaxation) for five minutes followed by a minute of BH. In the second step, the
relaxation period was reduced to two minutes, and the BH phase was incremented by an
additional sixty seconds from previous step. In the third step, participants relaxed again,
followed by three minutes of BH.

Prior to data collection participants were given enough relaxation periods. For data
collection, they were asked to hold their breath as long as they can. The data was recorded
from the participant’s first inhalation (starting BH) to voluntary exhalation (ending BH). The
participants were asked to lay down after data collection until lightheadedness subsides.
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2.2. Data analysis

We used R programming software (R 4.2.0) for signal processing and data analysis.
The supine posture and the muscle spasm exert force vertically resulting in the appearance
of IBMs primarily in the vertical direction (z). Hence, force plates were used to capture
this biological phenomenon, and the force data in the vertical direction (vertical ground
reaction force) was analyzed.

The IBMs appeared later during the BH. Thus, we segmented vertical ground reaction
force data into the NM phase and IBM phase through visual inspection. The NM phase
data comprised mostly of baseline noise. The IBM phase comprise of several events of
IBMs. Hence, it was easy to isolate these two phases with visual inspection.

The segmented data was time normalized (spline interpolation) to 10000 time points
for the IBM phase (10000 × 1) and NM phase (10000 × 1) for each participant (10000 ×
1 × 8). Later the segmented data was smoothed using a root mean square function with
a window size of 50 ms. The IBM and NM data (time normalized and smoothed) were
combined to form a processed vertical ground reaction force data vector (20000 × 1 × 8).
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Figure 1. The framework for the clustering and classification of IBM phases.
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2.3. Acceleration and Jerk estimation

The participants had no significant center of mass (COM) displacement of other body
segments due to their static posture. Therefore, we assumed full body COM in the chest,
and acceleration (⃗a) and jerk (⃗j) of the IBM phase were estimated from the processed vertical
ground reaction force (Fz), as shown below.

F⃗z
20000×1

= F⃗a
20000×1

+ W (1)

F⃗z
20000×1

= m × (⃗a 20000×1
COM + g) (2)

a⃗z
20000×1 =

F⃗z
20000×1

m
− g (3)

j⃗z
20000×1

=
δa⃗z

δt

20000×1
(4)

F⃗a is the dynamic force data vector due to the accelerating center of mass (⃗aCOM),
W is the weight of the participants’ chest, m is the mass of the participant’s chest. The
participants’ chest mass is calculated from the thorax percentage contribution to full-body
mass [11], and g is the acceleration due to gravity. The superscript displays the dimension
of the data vector for a single participant in equations (1) to (4).

2.4. Phase portraits

A phase portrait (P⃗) is a geometric representation of the dynamic trajectories in the
phase plane [12]. The a⃗ and j⃗ data were used to develop phase portraits for feature selection
and extraction. The phase portraits yielded phases that overlap between the IBM phase
and the NM phase. Thus, developing phase portraits were crucial to remove phases and
frequencies, that overlap between the NM phase and IBM phase. This feature selection and
extraction through phase portraits may pose useful to enhance the performance (accuracy,
computation, robustness) of our pattern recognition and detection scheme.

P⃗ 20000×2 = (x = a⃗, y = j⃗) (5)

We first separated the data points overlapping between IBM phase and NM phases by
sorting the values of a⃗ and j⃗ in descending/ascending order from phase portraits. These
samples of a⃗ and j⃗ were then shuffled randomly and independently so that the features will
represent unbiased population of the data. Furthermore, peak envelopes, lower (⃗aRMS(u),
j⃗RMS(u)) and upper envelopes (⃗aRMS(l), j⃗RMS(l)) were extracted. These features were finally
used for unsupervised and supervised learning.

2.5. Unsupervised learning

We performed unsupervised learning to recognize similarities and/or dissimilarities
between the IBM and NM phases, and to recognize specific patterns/sub-phases/groups
within IBM phase. These groups were labeled as different classes for classification.

K means cluster analysis was implemented on the extracted features (⃗aRMS(u), j⃗RMS(u),
a⃗RMS(l), j⃗RMS(l)) as an unsupervised learning algorithm. The K means clustering algorithm
groups the data points within these features based on their similarity into clusters.

2.6. Statistical analysis

To test the normality, we performed Kolmogorov–Smirnov test. The type (parametric
or non-parametric) of test to compare the difference between the IBM phase and NM phase
was based on the rejection of the null hypothesis. We considered a significance value of p <
0.05 to reject the null hypothesis.
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Violin and box plots are used to display the distribution, mean and standard deviation
of the data.

2.7. Supervised learning

A supervised learning approach was implemented to isolate the onset of different
sub-phases of IBMs with a classifier. We developed a classification model with training
data that makes no assumption about the normality of data. We used SVM, NB, DT, and
K-NN as classifiers.

The features that were grouped into different clusters (NM phase and different IBM
sub-phases) were labeled as different classes for supervised learning. Furthermore, these
labeled features were split into a ratio of 75:25 for training (⃗a 15000×1

RMS(u) , j⃗ 15000×1
RMS(u) , a⃗ 15000×1

RMS(l) ,

j⃗ 15000×1
RMS(l) ) and testing (⃗a 5000×1

RMS(u), j⃗ 5000×1
RMS(u), a⃗ 5000×1

RMS(l), j⃗ 5000×1
RMS(l)) data. The training data was used

to train the classification model, and the test data was used to evaluate the accuracy of the
model. We also used K-fold cross (K = 10) validation procedure to validate our training
model before evaluating its accuracy with testing data.

3. Results
3.1. IBM phase vs NM phase

We first tested whether the IBMs were present in the vertical ground reaction force,
and were detectable through test statistics. We found vertical ground reaction force data
was statistically significant (p ≤ 0.05, Wilcoxon sign rank paired test) between the IBM and
NM phases. The force amplitude’s median value were different between the IBM phase
and NM phase as shown in figure 2.

Moreover, statistically significant differences (p ≤ 0.05, Levene’s test) in the variance
of the ground reaction force between the NM phase and IBM phase were present for all the
participants. Figure 2 shows the distribution of the vertical ground reaction force data for
all the participants.

The high variance during the IBM phase was due to periodic signal output of varying
amplitude. Hence, the IBMs of varying magnitude were present in the force data and were
detected using an appropriate statistical measure.
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Figure 2. The top panels labeled with participants’ ID (P1, P2, P3, P4) and the bottom panels labeled
with participants’ ID (P5, P6, P7, P8) show the violin plots of the respective participants. The y-axis
is normalized force value. A box plot is also encapsulated within the violin plot. The grey region
represents the high spikes (outliers) in the data, and the p values for each participant has been
displayed on the top of each panel.

3.2. Phase portraits

The phase portraits generated from the estimated a⃗ and j⃗ were then used for feature
selection and extraction. We found clear isolation between the IBM phase and NM phase
from the phase portraits and their density plot, as shown in figure 3.
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Figure 3. A) The top eight panels display phase portraits for all the participants. Thus, each panel
shows a phase portrait of a participant. The phase portrait indicates rhythmicity of varying magnitude
(amplitude) during IBM phase. B) The bottom eight panels show the density of data points in the
phase portraits. Thus, each panel displays the density plot of a participant. The NM phase and
IBM phase isolation are visible. The x (⃗a) and y (⃗j) axes values are normalized between (-1,1) across
participants for better visual representation. A spectrum of densities (bottom) can be observed during
the IBM phase which is associated with different sub-phases during SP.

The data points for the NM phase were concentrated at a specific region of less
magnitude around the baseline signal. The data density was also high in this region as
shown in figure 3. Thus, the BH data was mostly composed of baseline noise associated
with the NM phase.

The IBM phase concentrically surrounds the NM phase area. These concentric circles
represent the regions of low, moderate, and high magnitude of a⃗ and j⃗ as shown in figure
3. These different regions within the IBM phase suggest different sub-phases or patterns
within the IBM phase. In addition, the circular shape of the phase portrait suggests the
presence of some rhythmic patterns of IBMs.
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3.3. Clustering

The goal of clustering is to identify sub-phases within the IBM phase. But before, we
first determined the optimal number of clusters (K) that need to be defined in the K means
algorithm. We found that based on total withinness, five to six clusters were an optimal
choice for the goodness of clustering across most participants.

We then tested through clustering whether the IBM phase is a biological phenomenon
comprising varying magnitude of a⃗ and j⃗. We extracted peak minima and maxima values
of the NM phase and IBM phase (sliding window = 25 samples) from phase portraits before
feeding them to K means algorithm. The cluster analysis displays clear isolation between
the NM phase and IBM phase. Moreover, it also shows the separation of sub-phases within
the IBM phase.

Figure 4. K means cluster analysis for all the participants. Each panel shows the results of K
means clustering for a single participant. The magnitude for a⃗ on the x-axis and j⃗ on the y-axis was
normalized between 0 to 1, and -1 to 1 respectively. The NM phase and IBM phase is represented by
circle and triangle shape, respectively. Cluster 1 and 6 shows overlap between NM and a certain IBM
sub-phases, whereas cluster 2, 3, 4, and 5 shows more patterns revealing different sub-phases of IBM.

The cluster analysis displayed that cluster 1 and cluster 6 comprise NM phase and
few IBM data points. The centroid of these clusters was towards the point of origin (0,0)
and (⃗a, 0). Therefore, suggesting an overlap between the NM phase and IBM phase due to
no activity. The values slight above (0,0) for a⃗ and j⃗ in cluster 1 and 6 suggest IBM onset.
Moreover, the constant a⃗ of higher magnitude was also grouped in clusters 1 and 6.

The cluster 2, 3, 4 and 5 mainly represented IBM phase. The centroid of the clusters
2, 3 4 and 5 showed varying degree of a⃗ and j⃗ during IBM phase as shown in figure 4.
These clusters explained phases of a⃗ and j⃗ with (high, high), (high, moderate), (moderate,
high) and (moderate, moderate) magnitude. The categorical names here were based on the
relative magnitude of the centroids. Thus, different patterns or sub-phases were present
and identified during IBM phase using K means clustering.

3.4. Classification

Supervised learning classified these complex patterns or sub-phases with a computa-
tional model. Our aim of classification was to design a scheme that detects the clustered
regions with high accuracy.

We trained different classifiers for the labeled data. The data were labeled based on
the clusters. We performed 10-fold cross-validation procedure to validate our classification
model (shown in figure 5A). We further evaluated the model accuracy with the testing data.
We found that our classification model can predict with an accuracy of 96.5-99.9%.

We also trained models without feature selection and extraction. We found that the
accuracy of those models was consistent with most algorithms, except DT as shown in
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table 2. The DT accuracy was also sensitive to the number of classes when no features were
selected and extracted as shown in figure 5B. The processing speed also slowed down for
most algorithms due to the increased computation cost, as shown in table 2.
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B

Figure 5. A) The top four panels with boxplots show classifiers’ performance using 10-fold cross-
validation, thus, each panel displays a specific classifier. The y-axis shows validation accuracy in
decimal. The features were selected and extracted to train the model from 5-11 classes, and a 10-fold
cross-validation was performed before performance evaluation with testing data. The classes number
were also changed to test the sensitivity of accuracy. B) The lower panel shows the relationship
between the number of classes and the accuracy of the DT classifier on data without features. The
x-axis shows a number of clusters and the y-axis shows accuracy in percentage. The DT accuracy
decreased when the number of clusters or classes increased, especially when features were not
selected and extracted.

However, the feature selection reduced the computation cost without loss of accuracy
(robustness). In addition, we also found feature selection improves DT accuracy, as shown
in table 2. Therefore, our scheme provided a low computation cost with feature selection
and higher accuracy with different classifiers. Thus, our model can classify or detect
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different sub-phases during IBM phase with high accuracy using different algorithms, and
low computation cost, as shown in table 2.

Table 2. Comparison of accuracy of different methods evaluated using testing data.

Classi f ier Clusters
K = 5

Accuracy%(Duration) Accuracy% (Duration)
Features sel. No Features sel.

K-NN 99.9 (Low) 99.9 (Moderate)
NB 99.9 (Low) 99.3 (Low)

SVM 99.9 (Low) 99.7 (Very High)
DT 99.9 (Low) 58.0 (High)

Note:- The categorical values were used to specify processing speed rather than quantitative.
It is because the quantitative values representing the processing speed vary depending on
the hardware (processor). Moreover, the tuning parameters for classifiers were fixed while
comparing feature selection and extraction against no-feature selection. This removes the
analysis bias.

4. Discussion

We developed a pattern recognition and classification scheme to detect different sub-
phases of IBMs during BH. We used force plates and estimated a⃗ and j⃗ to quantify the
movement during contractions. Furthermore, we used phase portraits as a means to select
features for our clustering and classification algorithms. We found that our designed
scheme has high processing speed, robustness, and accuracy using classifiers such as SVM,
NB, DT, and K-NN. We suggest that our scheme is of significant interest to practitioners
working with the breathing disorder population. It can assist in detecting certain events
of varying intensities within the IBM phase, thus diagnosing the extent of the breathing
problem.

The use of kinetic, kinematics and neural signals (EMG) is not uncommon for move-
ment classification [13], [14], [15]. Based on the application of our study, the duration and
strength of IBMs, kinetics, and kinematics are better choices for signal classification. A
sensor review study validates it [17]. Moreover, surface EMG (sEMG) based classification
was challenging because the muscles associated with IBMs are mostly deep (intercostals
and diaphragm).

The circular geometry estimated from a⃗ and j⃗ phases during BH suggest rhythmic
kinematic patterns of IBMs. There are phase portrait-based comparative studies performed
on the locomotion of patients with Parkinson’s and without Parkinson’s that validate this
hypothesis [18]. Although previous studies had focused on movements where joint angle
during muscle contraction changed [19], our study is the first to use phase portraits for
involuntary contraction analysis. Moreover, the variability in the IBMs amplitude appeared
as the concentric circles in the phase portraits. Thus, the phase portraits provided a good
indicator of periodicity in signals with varying amplitude. And phase portraits provided
information about redundant features and crucial features. The redundant features were
removed, whereas crucial features were extracted for cluster analysis. The processing, se-
lection, and extraction of features using phase portrait increased the classification accuracy
and reduced the computation burden.

4.1. Physiological interpretation of clusters

We used clusters to group different phases of IBM phase. These groups displayed
changes in a⃗ and j⃗ data values during a BH. We found from these clusters that there are
sub-phases of low, moderate, and high magnitude within the IBM phase. The low values of
a⃗ and j⃗ during IBMs were clustered with NM phase in clusters 1 and 6. The low values of a⃗
and j⃗ in these clusters represented the onset of IBM. Moreover, the high and moderate data
values of IBM phase grouped in clusters 2, 3, 4 and 5 has physiological relevance to extend
BH.
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Our study showed different levels of a⃗ and j⃗ clustered in groups 2, 3, 4, and 5 were
correlated with force and were associated with increasing IBMs or struggle phase during
BH. The struggle phase is a phase in which participants can hold their breath beyond PB
before reaching CB [10]. A previous study showed an increased amplitude and frequency
of pressure signals is an indicator of struggle termination [6], [7], [10]. In our study, we
observed similar results for most participants, where force amplitude incremented continu-
ously until the end of the SP, as shown in figure 6B. However, in a few participants, the
signal amplitude decayed before the SP ended, as shown in figure 6A. The low force signal
amplitude before SP end could be due to high fatigue index and low energy expenditure as
the O2 level in blood during BH was depleting [20], [21].

N
e
w

to
n
s

A

B

EP or NM SP CB

Normalized Time in Seconds

PB

Figure 6. Raw force signal during BH. The top panel (A) and bottom panel (B) shows force signals
for two different participants. The x-axis is normalized time in seconds. The time was normalized
across participants for better visual representation. The y-axis is force magnitude in newtons which
is not normalized here. The grey region shows NM or EP phase, the white region shows SP, and the
red region starting from the CB shows end of BH. The spikes appearing during BH is a movement
artifact due to some position change on force plate which were later removed from the analysis. A)
The force signal for a participant displaying slight decrease in amplitude near the end of SP. B) The
force signal for a participant showing continuously increasing amplitude until the end of SP.
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4.2. Accuracy, Speed, and Robustness

We used different classifiers that makes no assumption about normality, such as SVM,
DT, NB, and K-NN [22], [23], [24], [25]. Our study also showed that the classification
accuracy does not improve radically with feature selection and extraction as most classifiers
performed well with the raw data. Moreover, accuracy does not decrease with an increase
in the number of classes (clusters, K = 5 to 11). This creates a question about our scheme,
whether feature selection using phase portraits was necessary. The answer depends on the
criteria considered for detection because we also found that the greedy algorithm such as
DT classification accuracy was sensitive to feature selection, extraction, and the number of
classes. Therefore, if the goal is to detect different IBM sub-phases with high accuracy and
ignore other aspects such as processing time and flexibility of using different algorithms,
then feature selection and extraction using phase portraits are not necessary. However,
ignoring these criteria will increase the hardware cost as faster processors and built-in
computation methods will be needed. Therefore, our detection scheme offers high accuracy,
speed, and flexibility with other algorithms without loss of accuracy (robustness).

The other aspect of the classification accuracy of our scheme is parameter optimization.
We have mentioned in our results that we kept parameters consistent while comparing the
accuracy with and without feature selection. Hence, the DT model without features was not
optimized subjectively to attain higher accuracy. The rationale was to reduce any analysis
bias. However, the biased approach of optimizing the parameter for higher accuracy of
the DT training model will not change the fact that there will still be a trade-off between
accuracy and speed. Therefore, in our study, feature selection and extraction using phase
portraits are of significant importance as it reduces the constraints related to processing
speed without impact accuracy [26], especially for greedy deterministic algorithms like DT.

4.3. Limitations & Future work

There are information-based constraints with two-dimensional features (⃗a, j⃗) in this
study. The lack of high-dimensional feature space limits the degree of freedom to process
enough information. But additional information can be captured using multichannel
sensors with a high sampling rate. The inertial measurement units (IMUs) sensors can
be an alternate [17], [27]. The IMUs are embedded with accelerators, gyroscopes, and
magnetometers, and they can provide linear and rotational kinematic information about
IBM in the vertical direction [27] ,[28]. Therefore, a high-dimensional feature space can be
acquired using such sensors and will be the scope of our future studies.

In addition, our study does not account for the relationship between physiological
factors [29] (such as motivation level, blood lactic acid level, lung volume, partial levels of
O2 and CO2 (PO2 and PCO2) and IBM sub-phases. Therefore, in this study, IBM’s physio-
logical role is inferred. These physiological factors are the key factors for SP characteristics
determination [7], [10]. Thus, we cannot develop a concrete relationship between IBM
sub-phases and SP physiological characteristics. It is something we will be considering
studying in the future.

5. Conclusion

We found in our study that IBMs during BH can be captured through force sensors. In
this study, we developed a pattern recognition and classification scheme using estimated
a⃗ and j⃗ from the vertical ground reaction force. The a⃗ and j⃗ were used to quantify the
rapid movements associated with involuntary contractions. Our scheme recognizes and
classifies the IBM phase from the NM phase during BH, and also identifies and classifies
different sub-phases of varying (low, moderate, and high) magnitude within the IBM phase.
We also developed phase portraits using a⃗ and j⃗ to select and extract specific features so
that accuracy, robustness, and computational cost of our scheme can be enhanced. To the
best of our knowledge, this is the first study that had developed a pattern recognition and
classification scheme to detect IBMs from vertical ground reaction force.
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